The semi-classical ergodic Theorem for discontinuous metrics

Yves Colin de Verdière[1]

  • [1] Université de Grenoble, Institut Fourier UMR CNRS-UJF 5582 BP 74 38402-Saint Martin d’Hères Cedex (France)

Séminaire de théorie spectrale et géométrie (2012-2014)

  • Volume: 31, page 71-89
  • ISSN: 1624-5458

Abstract

top
In this paper, we present an extension of the classical Quantum ergodicity Theorem, due to Shnirelman, to the case of Laplacians with discontinous metrics along interfaces. The “geodesic flow” is then no more a flow, but a Markov process due to the fact that rays can by reflected or refracted at the interfaces. We give also an example build by gluing together two flat Euclidean disks.

How to cite

top

Colin de Verdière, Yves. "The semi-classical ergodic Theorem for discontinuous metrics." Séminaire de théorie spectrale et géométrie 31 (2012-2014): 71-89. <http://eudml.org/doc/275763>.

@article{ColindeVerdière2012-2014,
abstract = {In this paper, we present an extension of the classical Quantum ergodicity Theorem, due to Shnirelman, to the case of Laplacians with discontinous metrics along interfaces. The “geodesic flow” is then no more a flow, but a Markov process due to the fact that rays can by reflected or refracted at the interfaces. We give also an example build by gluing together two flat Euclidean disks.},
affiliation = {Université de Grenoble, Institut Fourier UMR CNRS-UJF 5582 BP 74 38402-Saint Martin d’Hères Cedex (France)},
author = {Colin de Verdière, Yves},
journal = {Séminaire de théorie spectrale et géométrie},
language = {eng},
pages = {71-89},
publisher = {Institut Fourier},
title = {The semi-classical ergodic Theorem for discontinuous metrics},
url = {http://eudml.org/doc/275763},
volume = {31},
year = {2012-2014},
}

TY - JOUR
AU - Colin de Verdière, Yves
TI - The semi-classical ergodic Theorem for discontinuous metrics
JO - Séminaire de théorie spectrale et géométrie
PY - 2012-2014
PB - Institut Fourier
VL - 31
SP - 71
EP - 89
AB - In this paper, we present an extension of the classical Quantum ergodicity Theorem, due to Shnirelman, to the case of Laplacians with discontinous metrics along interfaces. The “geodesic flow” is then no more a flow, but a Markov process due to the fact that rays can by reflected or refracted at the interfaces. We give also an example build by gluing together two flat Euclidean disks.
LA - eng
UR - http://eudml.org/doc/275763
ER -

References

top
  1. Ralph Abraham, Transversality in manifolds of mappings, Bull. Amer. Math. Soc. 69 (1963), 470-474 Zbl0171.44501MR149495
  2. Ralph Abraham, Joel Robbin, Transversal mappings and flows, (1967), W. A. Benjamin, Inc., New York-Amsterdam Zbl0171.44404MR240836
  3. Guillaume Bal, Kinetics of scalar wave fields in random media, Wave Motion 43 (2005), 132-157 Zbl1231.76257MR2186924
  4. Gregory Berkolaiko, Jon Keating, Brian Winn, No quantum ergodicity for star graphs, Comm. Math. Phys. 250 (2004), 259-285 Zbl1059.81066MR2094517
  5. Jacques Chazarain, Construction de la paramétrix du problème mixte hyperbolique pour l’équation des ondes, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1213-A1215 Zbl0253.35058MR320536
  6. Hans Duistermaat, Victor Guillemin, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math. 29 (1975), 39-79 Zbl0307.35071MR405514
  7. Nelson Dunford, Jacob T. Schwartz, Linear operators. Part I, (1988), John Wiley & Sons, Inc., New York Zbl0635.47001MR1009162
  8. Patrick Gérard, Éric Leichtnam, Ergodic properties of eigenfunctions for the Dirichlet problem, Duke Math. J. 71 (1993), 559-607 Zbl0788.35103MR1233448
  9. Dmitry Jakobson, Yuri Safarov, Alexander Strohmaier, Yves Colin de Verdière (Appendix), The semi-classical theory of discontinuous systems and ray-splitting billiards, (2015) 
  10. Ulrich Krengel, Ergodic theorems, 6 (1985), Walter de Gruyter & Co., Berlin Zbl0575.28009MR797411
  11. Alexander Shnirelman, Ergodic properties of eigenfunctions, Uspehi Mat. Nauk 29 (1974), 181-182 Zbl0324.58020MR402834
  12. René Thom, Un lemme sur les applications différentiables, Bol. Soc. Mat. Mexicana (2) 1 (1956), 59-71 Zbl0075.32201MR102115
  13. Yves Colin de Verdière, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102 (1985), 497-502 Zbl0592.58050
  14. Yves Colin de Verdière, Semi-classical measures on quantum graphs and the Gauß map of the determinant manifold, Ann. Henri Poincaré 16 (2015), 347-364 Zbl1306.81043MR3302601
  15. Yves Colin de Verdière, Luc Hillairet, Emmanuel Trélat, Quantum ergodicity for sub-Riemannian Laplacians. I: the contact 3D case, (2015) 
  16. Steven Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), 919-941 Zbl0643.58029MR916129
  17. Steven Zelditch, Maciej Zworski, Ergodicity of eigenfunctions for ergodic billiards, Comm. Math. Phys. 175 (1996), 673-682 Zbl0840.58048MR1372814

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.