# Galois extensions of height-one commuting dynamical systems

Ghassan Sarkis^{[1]}; Joel Specter^{[2]}

- [1] Pomona College 610 North College Avenue Claremont, CA 91711, USA
- [2] Northwestern University 2033 Sheridan Road Evanston, IL 60208, USA

Journal de Théorie des Nombres de Bordeaux (2013)

- Volume: 25, Issue: 1, page 163-178
- ISSN: 1246-7405

## Access Full Article

top## Abstract

top## How to cite

topSarkis, Ghassan, and Specter, Joel. "Galois extensions of height-one commuting dynamical systems." Journal de Théorie des Nombres de Bordeaux 25.1 (2013): 163-178. <http://eudml.org/doc/275770>.

@article{Sarkis2013,

abstract = {We consider a dynamical system consisting of a pair of commuting power series under composition, one noninvertible and another nontorsion invertible, of height one with coefficients in the $p$-adic integers. Assuming that each point of the dynamical system generates a Galois extension over the base field, we show that these extensions are in fact abelian, and, using results from the theory of the field of norms, we also show that the dynamical system must include a torsion series. From an earlier result, this shows that the original two series must in fact be endomorphisms of some height-one formal group.},

affiliation = {Pomona College 610 North College Avenue Claremont, CA 91711, USA; Northwestern University 2033 Sheridan Road Evanston, IL 60208, USA},

author = {Sarkis, Ghassan, Specter, Joel},

journal = {Journal de Théorie des Nombres de Bordeaux},

language = {eng},

month = {4},

number = {1},

pages = {163-178},

publisher = {Société Arithmétique de Bordeaux},

title = {Galois extensions of height-one commuting dynamical systems},

url = {http://eudml.org/doc/275770},

volume = {25},

year = {2013},

}

TY - JOUR

AU - Sarkis, Ghassan

AU - Specter, Joel

TI - Galois extensions of height-one commuting dynamical systems

JO - Journal de Théorie des Nombres de Bordeaux

DA - 2013/4//

PB - Société Arithmétique de Bordeaux

VL - 25

IS - 1

SP - 163

EP - 178

AB - We consider a dynamical system consisting of a pair of commuting power series under composition, one noninvertible and another nontorsion invertible, of height one with coefficients in the $p$-adic integers. Assuming that each point of the dynamical system generates a Galois extension over the base field, we show that these extensions are in fact abelian, and, using results from the theory of the field of norms, we also show that the dynamical system must include a torsion series. From an earlier result, this shows that the original two series must in fact be endomorphisms of some height-one formal group.

LA - eng

UR - http://eudml.org/doc/275770

ER -

## References

top- R. Camina, Subgroups of the Nottingham group. J. Algebra 196 (1997), no. 1, 101–113. Zbl0883.20015MR1474165
- J.-M. Fontaine, J.-P. Wintenberger, Le “corps des normes” de certaines extensions algébriques de corps locaux. C. R. Acad. Sci. Paris 288 (1979), 367–370. Zbl0475.12020MR526137
- J.-M. Fontaine, J.-P. Wintenberger, Extensions algébriques et corps des normes des extensions APF des corps locaux. C. R. Acad. Sci. Paris 288 (1979), 441–444. Zbl0403.12018MR527692
- G. Klaas, C. R. Leedham-Green, W. Plesken, Linear Pro-p-groups of Finite Width. Lecture Notes in Mathematics 1674 (Springer-Verlag), 1997. Zbl0901.20013MR1483894
- B. Klopsch, Automorphisms of the Nottingham group. J. Algebra 223 (2000), no. 1, 37–56. Zbl0965.20021MR1738250
- N. Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions. Springer, New York, 1977. Zbl0364.12015MR466081
- F. Laubie, A. Movahhedi, A. Salinier, Systèmes dynamiques non archimédiens et corps des normes. Compos. Math. 132 (2002), 57–98. Zbl1101.14057MR1914256
- J. Lubin, One-parameter formal Lie groups over $\U0001d513$-adic integer rings. Ann. Math. 80 (1964), 464–484. Zbl0135.07003MR168567
- J. Lubin, Nonarchimedean dynamical systems. Compos. Math. 94 (1994), 321–346. Zbl0843.58111MR1310863
- J. LubinTorsion in the Nottingham group. Bull. Lond. Math. Soc. 43 (2011), 547–560. Zbl1267.11115MR2820144
- J. Lubin, J. Tate, Formal complex multiplication in local fields. Ann. Math. 81 (1965), no. 2, 380–387. Zbl0128.26501MR172878
- G. Sarkis, Height one commuting dynamical systems over ${\mathbb{Z}}_{p}$. Bull. Lond. Math. Soc. 42 (2010), no. 3, 381–387. Zbl1200.11087MR2651931
- S. Sen, On automorphisms of local fields. Ann. of Math. (2) 90 (1969), 33–46. Zbl0199.36301MR244214
- J.-P. Serre, Local Fields. Springer, New York, 1979. Zbl0423.12016MR554237
- J.-P. Wintenberger, Extensions abéliennes et groupes dÕautomorphismes de corps locaux. C.R. Acad. Sci. Paris 290 (1980), 201–203. Zbl0428.12012MR564309

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.