Galois extensions of height-one commuting dynamical systems

Ghassan Sarkis[1]; Joel Specter[2]

  • [1] Pomona College 610 North College Avenue Claremont, CA 91711, USA
  • [2] Northwestern University 2033 Sheridan Road Evanston, IL 60208, USA

Journal de Théorie des Nombres de Bordeaux (2013)

  • Volume: 25, Issue: 1, page 163-178
  • ISSN: 1246-7405

Abstract

top
We consider a dynamical system consisting of a pair of commuting power series under composition, one noninvertible and another nontorsion invertible, of height one with coefficients in the p -adic integers. Assuming that each point of the dynamical system generates a Galois extension over the base field, we show that these extensions are in fact abelian, and, using results from the theory of the field of norms, we also show that the dynamical system must include a torsion series. From an earlier result, this shows that the original two series must in fact be endomorphisms of some height-one formal group.

How to cite

top

Sarkis, Ghassan, and Specter, Joel. "Galois extensions of height-one commuting dynamical systems." Journal de Théorie des Nombres de Bordeaux 25.1 (2013): 163-178. <http://eudml.org/doc/275770>.

@article{Sarkis2013,
abstract = {We consider a dynamical system consisting of a pair of commuting power series under composition, one noninvertible and another nontorsion invertible, of height one with coefficients in the $p$-adic integers. Assuming that each point of the dynamical system generates a Galois extension over the base field, we show that these extensions are in fact abelian, and, using results from the theory of the field of norms, we also show that the dynamical system must include a torsion series. From an earlier result, this shows that the original two series must in fact be endomorphisms of some height-one formal group.},
affiliation = {Pomona College 610 North College Avenue Claremont, CA 91711, USA; Northwestern University 2033 Sheridan Road Evanston, IL 60208, USA},
author = {Sarkis, Ghassan, Specter, Joel},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {4},
number = {1},
pages = {163-178},
publisher = {Société Arithmétique de Bordeaux},
title = {Galois extensions of height-one commuting dynamical systems},
url = {http://eudml.org/doc/275770},
volume = {25},
year = {2013},
}

TY - JOUR
AU - Sarkis, Ghassan
AU - Specter, Joel
TI - Galois extensions of height-one commuting dynamical systems
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/4//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 1
SP - 163
EP - 178
AB - We consider a dynamical system consisting of a pair of commuting power series under composition, one noninvertible and another nontorsion invertible, of height one with coefficients in the $p$-adic integers. Assuming that each point of the dynamical system generates a Galois extension over the base field, we show that these extensions are in fact abelian, and, using results from the theory of the field of norms, we also show that the dynamical system must include a torsion series. From an earlier result, this shows that the original two series must in fact be endomorphisms of some height-one formal group.
LA - eng
UR - http://eudml.org/doc/275770
ER -

References

top
  1. R. Camina, Subgroups of the Nottingham group. J. Algebra 196 (1997), no. 1, 101–113. Zbl0883.20015MR1474165
  2. J.-M. Fontaine, J.-P. Wintenberger, Le “corps des normes” de certaines extensions algébriques de corps locaux. C. R. Acad. Sci. Paris 288 (1979), 367–370. Zbl0475.12020MR526137
  3. J.-M. Fontaine, J.-P. Wintenberger, Extensions algébriques et corps des normes des extensions APF des corps locaux. C. R. Acad. Sci. Paris 288 (1979), 441–444. Zbl0403.12018MR527692
  4. G. Klaas, C. R. Leedham-Green, W. Plesken, Linear Pro-p-groups of Finite Width. Lecture Notes in Mathematics 1674 (Springer-Verlag), 1997. Zbl0901.20013MR1483894
  5. B. Klopsch, Automorphisms of the Nottingham group. J. Algebra 223 (2000), no. 1, 37–56. Zbl0965.20021MR1738250
  6. N. Koblitz, p -adic numbers, p -adic analysis, and zeta-functions. Springer, New York, 1977. Zbl0364.12015MR466081
  7. F. Laubie, A. Movahhedi, A. Salinier, Systèmes dynamiques non archimédiens et corps des normes. Compos. Math. 132 (2002), 57–98. Zbl1101.14057MR1914256
  8. J. Lubin, One-parameter formal Lie groups over 𝔓 -adic integer rings. Ann. Math. 80 (1964), 464–484. Zbl0135.07003MR168567
  9. J. Lubin, Nonarchimedean dynamical systems. Compos. Math. 94 (1994), 321–346. Zbl0843.58111MR1310863
  10. J. LubinTorsion in the Nottingham group. Bull. Lond. Math. Soc. 43 (2011), 547–560. Zbl1267.11115MR2820144
  11. J. Lubin, J. Tate, Formal complex multiplication in local fields. Ann. Math. 81 (1965), no. 2, 380–387. Zbl0128.26501MR172878
  12. G. Sarkis, Height one commuting dynamical systems over p . Bull. Lond. Math. Soc. 42 (2010), no. 3, 381–387. Zbl1200.11087MR2651931
  13. S. Sen, On automorphisms of local fields. Ann. of Math. (2) 90 (1969), 33–46. Zbl0199.36301MR244214
  14. J.-P. Serre, Local Fields. Springer, New York, 1979. Zbl0423.12016MR554237
  15. J.-P. Wintenberger, Extensions abéliennes et groupes dÕautomorphismes de corps locaux. C.R. Acad. Sci. Paris 290 (1980), 201–203. Zbl0428.12012MR564309

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.