Self-intersection of the relative dualizing sheaf on modular curves
- [1] Universität Regensburg Universitätsstrasse 31 93053 Regensburg, Germany
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 1, page 111-161
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topMayer, Hartwig. "Self-intersection of the relative dualizing sheaf on modular curves $X_1(N)$." Journal de Théorie des Nombres de Bordeaux 26.1 (2014): 111-161. <http://eudml.org/doc/275788>.
@article{Mayer2014,
abstract = {Let $N$ be an odd and squarefree positive integer divisible by at least two relative prime integers bigger or equal than $4$. Our main theorem is an asymptotic formula solely in terms of $N$ for the stable arithmetic self-intersection number of the relative dualizing sheaf for modular curves $X_1(N)/\mathbb\{Q\}$. From our main theorem we obtain an asymptotic formula for the stable Faltings height of the Jacobian $J_1(N)/\mathbb\{Q\}$ of $X_1(N)/\mathbb\{Q\}$, and, for sufficiently large $N$, an effective version of Bogomolov’s conjecture for $X_1(N)/\mathbb\{Q\}$.},
affiliation = {Universität Regensburg Universitätsstrasse 31 93053 Regensburg, Germany},
author = {Mayer, Hartwig},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Arakelov self-intersection number; relative dualizing sheaf; modular curve},
language = {eng},
month = {4},
number = {1},
pages = {111-161},
publisher = {Société Arithmétique de Bordeaux},
title = {Self-intersection of the relative dualizing sheaf on modular curves $X_1(N)$},
url = {http://eudml.org/doc/275788},
volume = {26},
year = {2014},
}
TY - JOUR
AU - Mayer, Hartwig
TI - Self-intersection of the relative dualizing sheaf on modular curves $X_1(N)$
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/4//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 1
SP - 111
EP - 161
AB - Let $N$ be an odd and squarefree positive integer divisible by at least two relative prime integers bigger or equal than $4$. Our main theorem is an asymptotic formula solely in terms of $N$ for the stable arithmetic self-intersection number of the relative dualizing sheaf for modular curves $X_1(N)/\mathbb{Q}$. From our main theorem we obtain an asymptotic formula for the stable Faltings height of the Jacobian $J_1(N)/\mathbb{Q}$ of $X_1(N)/\mathbb{Q}$, and, for sufficiently large $N$, an effective version of Bogomolov’s conjecture for $X_1(N)/\mathbb{Q}$.
LA - eng
KW - Arakelov self-intersection number; relative dualizing sheaf; modular curve
UR - http://eudml.org/doc/275788
ER -
References
top- A. Abbes and E. Ullmo, Auto-intersection du dualisant relatif des courbes modulaires . J. Reine Angew. Math. 484 (1997), 1–70. Zbl0934.14016MR1437298
- S. J. Arakelov, Intersection theory of divisors on an arithmetic surface. Math. USSR Izvestija 8 (1974), 1167–1180. Zbl0355.14002MR472815
- A. O. L. Atkin and W.-C. W. Li, Twists with Newforms and Pseudo-Eigenvalues of -Operators. Invent. Math. 48 (1978), 221–243. Zbl0369.10016MR508986
- J.-B. Bost, J.-F. Mestre and L. Moret-Bailly, Sur le calcul explicite des “classes de Chern” des surfaces arithmétiques de genre . In: Séminaire sur les Pinceaux de Courbes Elliptiques (Paris, 1988), Astérisque 183 (1990), 69–105. Zbl0731.14017MR1065156
- C. Curilla and U. Kühn, On the arithmetic self-intersection numbers of the dualizing sheaf for Fermat curves of prime exponent. arXiv:0906.3891v1, 2009.
- F. Diamond and J. Shurman, A first course in modular forms. Graduate Texts in Mathematics 228, Springer-Verlag, 2005. Zbl1062.11022MR2112196
- V. G. Drinfeld, Two theorems on modular curves. Funct. Anal. Appl. 7 (1973), 155–156. Zbl0285.14006MR318157
- B. Edixhoven and J.-M. Couveignes et al., Computational aspects of modular forms and Galois representations. Annals of Mathematics Studies 176, Princeton University Press, 2011. Zbl1216.11004MR2849700
- G. Faltings, Calculus on arithmetic surfaces. Ann. of Math. 119 (1984), 387–424. Zbl0559.14005MR740897
- S. D. Gupta, The Rankin-Selberg Method on Congruence Subgroups. Illinois J. Math. 44 (2000), 95–103. Zbl0951.11019MR1731383
- D. A. HejhalThe Selberg trace formula for . Vol. 1. Lecture Notes in Mathematics Vol. 548, Springer-Verlag, Berlin, 1976. Zbl0347.10018MR439755
- D. A. HejhalThe Selberg trace formula for . Vol. 2. Lecture Notes in Mathematics Vol. 1001, Springer-Verlag, Berlin, 1983. Zbl0543.10020MR711197
- H. Iwaniec, Spectral methods of automorphic forms. Graduate Studies in Mathematics 53, American Mathematical Society, 2002. Zbl1006.11024MR1942691
- H. Jacquet and D. Zagier, Eisenstein series and the Selberg trace formula. II. Trans. Amer. Math. Soc. 300 (1987), 1–48. Zbl0625.10024MR871663
- J. Jorgenson and J. Kramer, Bounds for special values of Selberg zeta functions of Riemann surfaces. J. Reine Angew. Math. 541 (2001), 1–28. Zbl0986.11058MR1876283
- J. Jorgenson and J. Kramer, Bounds on canonical Green’s functions. Compos. Math. 142 (2006), 679–700. Zbl1105.14028MR2231197
- J. Jorgenson and J. Kramer, Bounds on Faltings’s delta function through covers. Ann. of Math. 1 (2009), 1–43. Zbl1169.14020MR2521110
- N. M. Katz and B. Mazur, Arithmetic Moduli of Elliptic Curves. Princeton University Press, 1985. Zbl0576.14026MR772569
- C. Keil, Die Streumatrix für Untergruppen der Modulgruppe. PhD thesis, Universität Frankfurt am Main, 2006.
- E. Landau, Neuer Beweis eines analytischen Satzes des Herrn de la Vallée Poussin. Math. Ann. 56 (1903), 645–670. Zbl34.0228.03MR1511191
- H. Mayer, Self-Intersection of the Relative Dualizing Sheaf of Modular Curves . PhD thesis, Humboldt-Universität zu Berlin, 2012. Zbl1309.14021
- H. P. McKean, Selberg’s trace formula as applied to a compact Riemann surface. Comm. Pure Appl. Math. 25 (1972), 225–246. MR473166
- P. Michel and E. Ullmo, Points de petite hauteur sur les courbes modulaires . Invent. Math. 131 (1998), 645–674. Zbl0991.11037MR1614563
- L. Moret-Bailly, La formule de Noether pour les surfaces arithmétiques. Invent. Math. 98 (1989), 491–498. Zbl0727.14014MR1022303
- A. P. Ogg, Rational Points on certain Elliptic modular curves. In: Analytic number theory (Proc. Sympos. Pure Math., Vol XXIV), Amer. Math. Soc., Providence, RI (1973), 221–231. Zbl0273.14008MR337974
- W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene I. Math. Ann. 167 (1966), 292–337. Zbl0152.07705MR1513277
- W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene II. Math. Ann. 168 (1967), 261–324. Zbl0152.07705MR243062
- C. Soulé, Géométrie d’Arakelov des surfaces arithmétiques. In: Séminaire Bourbaki, Vol. 1988/89, Astérisque 177-178 (1989), 327–343. Zbl0766.14015MR1040579
- L. Szpiro, Sur les propriétés numériques du dualisant relatif d’une surface arithmétique. In: The Grothendieck Festschrift, Vol. III, Birkhäuser Boston (1990), 229–246. Zbl0759.14018MR1106917
- D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. In: Modular functions of one variable VI, Lect. Notes Math. 627, Springer-Verlag (1977), 105–169. Zbl0372.10017MR485703
- D. Zagier, Eisenstein series and the Selberg trace formula. I. In: Automorphic forms, representation theory and arithmetic (Bombay, 1979). Tata Inst. Fund. Res. Studies in Math. 10 (1981), 303–355. Zbl0484.10020MR633667
- D. Zagier, Zetafunktionen und quadratische Zahlkörper. Springer-Verlag, Berlin, 1981. MR631688
- S.-W. Zhang, Admissible pairing on a curve. Invent. Math. 112 (1993), 171–193. Zbl0795.14015MR1207481
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.