Self-intersection of the relative dualizing sheaf on modular curves X 1 ( N )

Hartwig Mayer[1]

  • [1] Universität Regensburg Universitätsstrasse 31 93053 Regensburg, Germany

Journal de Théorie des Nombres de Bordeaux (2014)

  • Volume: 26, Issue: 1, page 111-161
  • ISSN: 1246-7405

Abstract

top
Let N be an odd and squarefree positive integer divisible by at least two relative prime integers bigger or equal than 4 . Our main theorem is an asymptotic formula solely in terms of N for the stable arithmetic self-intersection number of the relative dualizing sheaf for modular curves X 1 ( N ) / . From our main theorem we obtain an asymptotic formula for the stable Faltings height of the Jacobian J 1 ( N ) / of X 1 ( N ) / , and, for sufficiently large N , an effective version of Bogomolov’s conjecture for X 1 ( N ) / .

How to cite

top

Mayer, Hartwig. "Self-intersection of the relative dualizing sheaf on modular curves $X_1(N)$." Journal de Théorie des Nombres de Bordeaux 26.1 (2014): 111-161. <http://eudml.org/doc/275788>.

@article{Mayer2014,
abstract = {Let $N$ be an odd and squarefree positive integer divisible by at least two relative prime integers bigger or equal than $4$. Our main theorem is an asymptotic formula solely in terms of $N$ for the stable arithmetic self-intersection number of the relative dualizing sheaf for modular curves $X_1(N)/\mathbb\{Q\}$. From our main theorem we obtain an asymptotic formula for the stable Faltings height of the Jacobian $J_1(N)/\mathbb\{Q\}$ of $X_1(N)/\mathbb\{Q\}$, and, for sufficiently large $N$, an effective version of Bogomolov’s conjecture for $X_1(N)/\mathbb\{Q\}$.},
affiliation = {Universität Regensburg Universitätsstrasse 31 93053 Regensburg, Germany},
author = {Mayer, Hartwig},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Arakelov self-intersection number; relative dualizing sheaf; modular curve},
language = {eng},
month = {4},
number = {1},
pages = {111-161},
publisher = {Société Arithmétique de Bordeaux},
title = {Self-intersection of the relative dualizing sheaf on modular curves $X_1(N)$},
url = {http://eudml.org/doc/275788},
volume = {26},
year = {2014},
}

TY - JOUR
AU - Mayer, Hartwig
TI - Self-intersection of the relative dualizing sheaf on modular curves $X_1(N)$
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/4//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 1
SP - 111
EP - 161
AB - Let $N$ be an odd and squarefree positive integer divisible by at least two relative prime integers bigger or equal than $4$. Our main theorem is an asymptotic formula solely in terms of $N$ for the stable arithmetic self-intersection number of the relative dualizing sheaf for modular curves $X_1(N)/\mathbb{Q}$. From our main theorem we obtain an asymptotic formula for the stable Faltings height of the Jacobian $J_1(N)/\mathbb{Q}$ of $X_1(N)/\mathbb{Q}$, and, for sufficiently large $N$, an effective version of Bogomolov’s conjecture for $X_1(N)/\mathbb{Q}$.
LA - eng
KW - Arakelov self-intersection number; relative dualizing sheaf; modular curve
UR - http://eudml.org/doc/275788
ER -

References

top
  1. A. Abbes and E. Ullmo, Auto-intersection du dualisant relatif des courbes modulaires X 0 ( N ) . J. Reine Angew. Math. 484 (1997), 1–70. Zbl0934.14016MR1437298
  2. S. J. Arakelov, Intersection theory of divisors on an arithmetic surface. Math. USSR Izvestija 8 (1974), 1167–1180. Zbl0355.14002MR472815
  3. A. O. L. Atkin and W.-C. W. Li, Twists with Newforms and Pseudo-Eigenvalues of W -Operators. Invent. Math. 48 (1978), 221–243. Zbl0369.10016MR508986
  4. J.-B. Bost, J.-F. Mestre and L. Moret-Bailly, Sur le calcul explicite des “classes de Chern” des surfaces arithmétiques de genre 2 . In: Séminaire sur les Pinceaux de Courbes Elliptiques (Paris, 1988), Astérisque 183 (1990), 69–105. Zbl0731.14017MR1065156
  5. C. Curilla and U. Kühn, On the arithmetic self-intersection numbers of the dualizing sheaf for Fermat curves of prime exponent. arXiv:0906.3891v1, 2009. 
  6. F. Diamond and J. Shurman, A first course in modular forms. Graduate Texts in Mathematics 228, Springer-Verlag, 2005. Zbl1062.11022MR2112196
  7. V. G. Drinfeld, Two theorems on modular curves. Funct. Anal. Appl. 7 (1973), 155–156. Zbl0285.14006MR318157
  8. B. Edixhoven and J.-M. Couveignes et al., Computational aspects of modular forms and Galois representations. Annals of Mathematics Studies 176, Princeton University Press, 2011. Zbl1216.11004MR2849700
  9. G. Faltings, Calculus on arithmetic surfaces. Ann. of Math. 119 (1984), 387–424. Zbl0559.14005MR740897
  10. S. D. Gupta, The Rankin-Selberg Method on Congruence Subgroups. Illinois J. Math. 44 (2000), 95–103. Zbl0951.11019MR1731383
  11. D. A. HejhalThe Selberg trace formula for PSL ( 2 , R ) . Vol. 1. Lecture Notes in Mathematics Vol. 548, Springer-Verlag, Berlin, 1976. Zbl0347.10018MR439755
  12. D. A. HejhalThe Selberg trace formula for PSL ( 2 , R ) . Vol. 2. Lecture Notes in Mathematics Vol. 1001, Springer-Verlag, Berlin, 1983. Zbl0543.10020MR711197
  13. H. Iwaniec, Spectral methods of automorphic forms. Graduate Studies in Mathematics 53, American Mathematical Society, 2002. Zbl1006.11024MR1942691
  14. H. Jacquet and D. Zagier, Eisenstein series and the Selberg trace formula. II. Trans. Amer. Math. Soc. 300 (1987), 1–48. Zbl0625.10024MR871663
  15. J. Jorgenson and J. Kramer, Bounds for special values of Selberg zeta functions of Riemann surfaces. J. Reine Angew. Math. 541 (2001), 1–28. Zbl0986.11058MR1876283
  16. J. Jorgenson and J. Kramer, Bounds on canonical Green’s functions. Compos. Math. 142 (2006), 679–700. Zbl1105.14028MR2231197
  17. J. Jorgenson and J. Kramer, Bounds on Faltings’s delta function through covers. Ann. of Math. 1 (2009), 1–43. Zbl1169.14020MR2521110
  18. N. M. Katz and B. Mazur, Arithmetic Moduli of Elliptic Curves. Princeton University Press, 1985. Zbl0576.14026MR772569
  19. C. Keil, Die Streumatrix für Untergruppen der Modulgruppe. PhD thesis, Universität Frankfurt am Main, 2006. 
  20. E. Landau, Neuer Beweis eines analytischen Satzes des Herrn de la Vallée Poussin. Math. Ann. 56 (1903), 645–670. Zbl34.0228.03MR1511191
  21. H. Mayer, Self-Intersection of the Relative Dualizing Sheaf of Modular Curves X 1 ( N ) . PhD thesis, Humboldt-Universität zu Berlin, 2012. Zbl1309.14021
  22. H. P. McKean, Selberg’s trace formula as applied to a compact Riemann surface. Comm. Pure Appl. Math. 25 (1972), 225–246. MR473166
  23. P. Michel and E. Ullmo, Points de petite hauteur sur les courbes modulaires X 0 ( N ) . Invent. Math. 131 (1998), 645–674. Zbl0991.11037MR1614563
  24. L. Moret-Bailly, La formule de Noether pour les surfaces arithmétiques. Invent. Math. 98 (1989), 491–498. Zbl0727.14014MR1022303
  25. A. P. Ogg, Rational Points on certain Elliptic modular curves. In: Analytic number theory (Proc. Sympos. Pure Math., Vol XXIV), Amer. Math. Soc., Providence, RI (1973), 221–231. Zbl0273.14008MR337974
  26. W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene I. Math. Ann. 167 (1966), 292–337. Zbl0152.07705MR1513277
  27. W. Roelcke, Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene II. Math. Ann. 168 (1967), 261–324. Zbl0152.07705MR243062
  28. C. Soulé, Géométrie d’Arakelov des surfaces arithmétiques. In: Séminaire Bourbaki, Vol. 1988/89, Astérisque 177-178 (1989), 327–343. Zbl0766.14015MR1040579
  29. L. Szpiro, Sur les propriétés numériques du dualisant relatif d’une surface arithmétique. In: The Grothendieck Festschrift, Vol. III, Birkhäuser Boston (1990), 229–246. Zbl0759.14018MR1106917
  30. D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. In: Modular functions of one variable VI, Lect. Notes Math. 627, Springer-Verlag (1977), 105–169. Zbl0372.10017MR485703
  31. D. Zagier, Eisenstein series and the Selberg trace formula. I. In: Automorphic forms, representation theory and arithmetic (Bombay, 1979). Tata Inst. Fund. Res. Studies in Math. 10 (1981), 303–355. Zbl0484.10020MR633667
  32. D. Zagier, Zetafunktionen und quadratische Zahlkörper. Springer-Verlag, Berlin, 1981. MR631688
  33. S.-W. Zhang, Admissible pairing on a curve. Invent. Math. 112 (1993), 171–193. Zbl0795.14015MR1207481

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.