Géométrie et topologie des variétés hyperboliques de grand volume

Jean Raimbault[1]

  • [1] Institut de Mathématiques de Toulouse UMR 5219 Université de Toulouse CNRS, UPS IMT F-31062 Toulouse Cedex 9 (France)

Séminaire de théorie spectrale et géométrie (2012-2014)

  • Volume: 31, page 163-195
  • ISSN: 1624-5458

Abstract

top
Cet article est un survol autour de deux prépublications récentes [2] et [39], qui se posent la question de l’étude de certains invariants topologiques et géométriques dans des suites d’espaces localement symétriques dont le volume tend vers l’infini. On donne aussi quelques applications à divers modèles de surfaces aléatoires.

How to cite

top

Raimbault, Jean. "Géométrie et topologie des variétés hyperboliques de grand volume." Séminaire de théorie spectrale et géométrie 31 (2012-2014): 163-195. <http://eudml.org/doc/275789>.

@article{Raimbault2012-2014,
abstract = {Cet article est un survol autour de deux prépublications récentes [2] et [39], qui se posent la question de l’étude de certains invariants topologiques et géométriques dans des suites d’espaces localement symétriques dont le volume tend vers l’infini. On donne aussi quelques applications à divers modèles de surfaces aléatoires.},
affiliation = {Institut de Mathématiques de Toulouse UMR 5219 Université de Toulouse CNRS, UPS IMT F-31062 Toulouse Cedex 9 (France)},
author = {Raimbault, Jean},
journal = {Séminaire de théorie spectrale et géométrie},
language = {fre},
pages = {163-195},
publisher = {Institut Fourier},
title = {Géométrie et topologie des variétés hyperboliques de grand volume},
url = {http://eudml.org/doc/275789},
volume = {31},
year = {2012-2014},
}

TY - JOUR
AU - Raimbault, Jean
TI - Géométrie et topologie des variétés hyperboliques de grand volume
JO - Séminaire de théorie spectrale et géométrie
PY - 2012-2014
PB - Institut Fourier
VL - 31
SP - 163
EP - 195
AB - Cet article est un survol autour de deux prépublications récentes [2] et [39], qui se posent la question de l’étude de certains invariants topologiques et géométriques dans des suites d’espaces localement symétriques dont le volume tend vers l’infini. On donne aussi quelques applications à divers modèles de surfaces aléatoires.
LA - fre
UR - http://eudml.org/doc/275789
ER -

References

top
  1. Miklós Abert, Invariant random subgroups and their applications Zbl1095.20001
  2. Miklos Abert, Nicolas Bergeron, Ian Biringer, Tsachik Gelander, Nikolay Nikolov, Jean Raimbault, Iddo Samet, On the growth of L 2 -invariants for sequences of lattices in Lie groups Zbl1223.53039
  3. Miklós Abért, Ian Biringer, Invariant measures on the space of all Riemannian manifolds, (2014) 
  4. Miklós Abért, Yair Glasner, Bálint Virág, Kesten’s theorem for invariant random subgroups, Duke Math. J. 163 (2014), 465-488 Zbl06282535MR3165420
  5. Ian Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045-1087 Zbl1286.57019MR3104553
  6. Werner Ballmann, Mikhael Gromov, Viktor Schroeder, Manifolds of nonpositive curvature, 61 (1985), Birkhäuser Boston, Inc., Boston, MA Zbl0591.53001MR823981
  7. Mikhail Belolipetsky, Hyperbolic orbifolds of small volume Zbl06359320
  8. Itai Benjamini, Oded Schramm, Recurrence of distributional limits of finite planar graphs, Electron. J. Probab. 6 (2001) Zbl1010.82021MR1873300
  9. N. Bergeron, D. Gaboriau, Asymptotique des nombres de Betti, invariants l 2 et laminations, Comment. Math. Helv. 79 (2004), 362-395 Zbl1061.55005MR2059438
  10. Ian Biringer, Omer Tamuz, Unimodularity of Invariant Random Subgroups 
  11. Béla Bollobás, Random graphs, 73 (2001), Cambridge University Press, Cambridge Zbl0979.05003MR1864966
  12. Robert Brooks, Platonic surfaces, Comment. Math. Helv. 74 (1999), 156-170 Zbl0920.30037MR1677565
  13. Robert Brooks, Eran Makover, Random construction of Riemann surfaces, J. Differential Geom. 68 (2004), 121-157 Zbl1095.30037MR2152911
  14. Claude Chabauty, Limite d’ensembles et géométrie des nombres, Bull. Soc. Math. France 78 (1950), 143-151 Zbl0039.04101MR38983
  15. Laurent Clozel, Démonstration de la conjecture τ , Invent. Math. 151 (2003), 297-328 Zbl1025.11012MR1953260
  16. B. Colbois, Y. Colin de Verdière, Sur la multiplicité de la première valeur propre d’une surface de Riemann à courbure constante, Comment. Math. Helv. 63 (1988), 194-208 Zbl0656.53043MR948777
  17. Harold Donnelly, On the spectrum of towers, Proc. Amer. Math. Soc. 87 (1983), 322-329 Zbl0512.58038MR681842
  18. Amichai Eisenmann, Yair Glasner, Generic IRS in free groups, after Bowen Zbl1315.22013
  19. Michael Farber, Geometry of growth : approximation theorems for L 2 invariants, Math. Ann. 311 (1998), 335-375 Zbl0911.53026MR1625742
  20. Alexander Gamburd, Eran Makover, On the genus of a random Riemann surface, Complex manifolds and hyperbolic geometry (Guanajuato, 2001) 311 (2002), 133-140, Amer. Math. Soc., Providence, RI Zbl1059.14040MR1940168
  21. Tsachik Gelander, Arie Levit, Counting commensurability classes of hyperbolic manifolds, Geom. Funct. Anal. 24 (2014), 1431-1447 MR3261631
  22. Étienne Ghys, Topologie des feuilles génériques, Ann. of Math. (2) 141 (1995), 387-422 Zbl0843.57026MR1324140
  23. R. I. Grigorchuk, Topological and metric types of surfaces that regularly cover a closed surface, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 498-536, 671 Zbl0686.57001MR1013710
  24. M. Gromov, I. Piatetski-Shapiro, Nonarithmetic groups in Lobachevsky spaces, Inst. Hautes Études Sci. Publ. Math. 66 (1988), 93-103 Zbl0649.22007MR932135
  25. Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, 152 (1999), Birkhäuser Boston, Inc., Boston, MA Zbl0953.53002MR1699320
  26. David Kazhdan, Some applications of the Weil representation, J. Analyse Mat. 32 (1977), 235-248 Zbl0445.22018MR492089
  27. Jian-Shu Li, John J. Millson, On the first Betti number of a hyperbolic manifold with an arithmetic fundamental group, Duke Math. J. 71 (1993), 365-401 Zbl0798.11019MR1233441
  28. Alexander Lubotzky, Free quotients and the first Betti number of some hyperbolic manifolds, Transform. Groups 1 (1996), 71-82 Zbl0876.22015MR1390750
  29. Alexander Lubotzky, Dan Segal, Subgroup growth, 212 (2003), Birkhäuser Verlag, Basel Zbl1071.20033MR1978431
  30. Colin Maclachlan, Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, 219 (2003), Springer-Verlag, New York Zbl1025.57001MR1937957
  31. Maryam Mirzakhani, Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus, J. Differential Geom. 94 (2013), 267-300 Zbl1270.30014MR3080483
  32. Hossein Namazi, Pekka Pankka, Juan Souto, Distributional limits of Riemannian manifolds and graphs with sublinear genus growth, Geom. Funct. Anal. 24 (2014), 322-359 Zbl1291.53056MR3177385
  33. Amos Nevo, Robert J. Zimmer, A generalization of the intermediate factors theorem, J. Anal. Math. 86 (2002), 93-104 Zbl1015.22002MR1894478
  34. Shin Ohno, Takao Watanabe, Estimates of Hermite constants for algebraic number fields, Comment. Math. Univ. St. Paul. 50 (2001), 53-63 Zbl1004.11039MR1839965
  35. Jean-Pierre Otal, Eulalio Rosas, Pour toute surface hyperbolique de genre g , λ 2 g - 2 &gt; 1 / 4 , Duke Math. J. 150 (2009), 101-115 Zbl1179.30041MR2560109
  36. Peter Petersen, Riemannian geometry, 171 (2006), Springer, New York Zbl1220.53002MR2243772
  37. Bram Petri, Random regular graphs and the systole of a random surface 
  38. Jean Raimbault, Analytic, Reidemeister and homological torsion for congruence three–manifolds Zbl1250.57004
  39. Jean Raimbault, On the convergence of arithmetic orbifolds Zbl06437679
  40. Jean Raimbault, A note on maximal lattice growth in SO ( 1 , n ) , Int. Math. Res. Not. 2013 (2013), 3722-3731 Zbl06437679MR3090707
  41. Ian Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963), 259-269 Zbl0156.22203MR143186
  42. Jonathan D. Rogawski, Automorphic representations of unitary groups in three variables, 123 (1990), Princeton University Press, Princeton, NJ Zbl0724.11031MR1081540
  43. Garrett Stuck, Robert J. Zimmer, Stabilizers for ergodic actions of higher rank semisimple groups, Ann. of Math. (2) 139 (1994), 723-747 Zbl0836.22018MR1283875
  44. Michael E. Taylor, Partial differential equations I. Basic theory, 115 (2011), Springer, New York Zbl1206.35002MR2744150
  45. Dave Witte Morris, Introduction to Arithmetic Groups Zbl1319.22007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.