Géométrie et topologie des variétés hyperboliques de grand volume
- [1] Institut de Mathématiques de Toulouse UMR 5219 Université de Toulouse CNRS, UPS IMT F-31062 Toulouse Cedex 9 (France)
Séminaire de théorie spectrale et géométrie (2012-2014)
- Volume: 31, page 163-195
- ISSN: 1624-5458
Access Full Article
topAbstract
topHow to cite
topRaimbault, Jean. "Géométrie et topologie des variétés hyperboliques de grand volume." Séminaire de théorie spectrale et géométrie 31 (2012-2014): 163-195. <http://eudml.org/doc/275789>.
@article{Raimbault2012-2014,
abstract = {Cet article est un survol autour de deux prépublications récentes [2] et [39], qui se posent la question de l’étude de certains invariants topologiques et géométriques dans des suites d’espaces localement symétriques dont le volume tend vers l’infini. On donne aussi quelques applications à divers modèles de surfaces aléatoires.},
affiliation = {Institut de Mathématiques de Toulouse UMR 5219 Université de Toulouse CNRS, UPS IMT F-31062 Toulouse Cedex 9 (France)},
author = {Raimbault, Jean},
journal = {Séminaire de théorie spectrale et géométrie},
language = {fre},
pages = {163-195},
publisher = {Institut Fourier},
title = {Géométrie et topologie des variétés hyperboliques de grand volume},
url = {http://eudml.org/doc/275789},
volume = {31},
year = {2012-2014},
}
TY - JOUR
AU - Raimbault, Jean
TI - Géométrie et topologie des variétés hyperboliques de grand volume
JO - Séminaire de théorie spectrale et géométrie
PY - 2012-2014
PB - Institut Fourier
VL - 31
SP - 163
EP - 195
AB - Cet article est un survol autour de deux prépublications récentes [2] et [39], qui se posent la question de l’étude de certains invariants topologiques et géométriques dans des suites d’espaces localement symétriques dont le volume tend vers l’infini. On donne aussi quelques applications à divers modèles de surfaces aléatoires.
LA - fre
UR - http://eudml.org/doc/275789
ER -
References
top- Miklós Abert, Invariant random subgroups and their applications Zbl1095.20001
- Miklos Abert, Nicolas Bergeron, Ian Biringer, Tsachik Gelander, Nikolay Nikolov, Jean Raimbault, Iddo Samet, On the growth of -invariants for sequences of lattices in Lie groups Zbl1223.53039
- Miklós Abért, Ian Biringer, Invariant measures on the space of all Riemannian manifolds, (2014)
- Miklós Abért, Yair Glasner, Bálint Virág, Kesten’s theorem for invariant random subgroups, Duke Math. J. 163 (2014), 465-488 Zbl06282535MR3165420
- Ian Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045-1087 Zbl1286.57019MR3104553
- Werner Ballmann, Mikhael Gromov, Viktor Schroeder, Manifolds of nonpositive curvature, 61 (1985), Birkhäuser Boston, Inc., Boston, MA Zbl0591.53001MR823981
- Mikhail Belolipetsky, Hyperbolic orbifolds of small volume Zbl06359320
- Itai Benjamini, Oded Schramm, Recurrence of distributional limits of finite planar graphs, Electron. J. Probab. 6 (2001) Zbl1010.82021MR1873300
- N. Bergeron, D. Gaboriau, Asymptotique des nombres de Betti, invariants et laminations, Comment. Math. Helv. 79 (2004), 362-395 Zbl1061.55005MR2059438
- Ian Biringer, Omer Tamuz, Unimodularity of Invariant Random Subgroups
- Béla Bollobás, Random graphs, 73 (2001), Cambridge University Press, Cambridge Zbl0979.05003MR1864966
- Robert Brooks, Platonic surfaces, Comment. Math. Helv. 74 (1999), 156-170 Zbl0920.30037MR1677565
- Robert Brooks, Eran Makover, Random construction of Riemann surfaces, J. Differential Geom. 68 (2004), 121-157 Zbl1095.30037MR2152911
- Claude Chabauty, Limite d’ensembles et géométrie des nombres, Bull. Soc. Math. France 78 (1950), 143-151 Zbl0039.04101MR38983
- Laurent Clozel, Démonstration de la conjecture , Invent. Math. 151 (2003), 297-328 Zbl1025.11012MR1953260
- B. Colbois, Y. Colin de Verdière, Sur la multiplicité de la première valeur propre d’une surface de Riemann à courbure constante, Comment. Math. Helv. 63 (1988), 194-208 Zbl0656.53043MR948777
- Harold Donnelly, On the spectrum of towers, Proc. Amer. Math. Soc. 87 (1983), 322-329 Zbl0512.58038MR681842
- Amichai Eisenmann, Yair Glasner, Generic IRS in free groups, after Bowen Zbl1315.22013
- Michael Farber, Geometry of growth : approximation theorems for invariants, Math. Ann. 311 (1998), 335-375 Zbl0911.53026MR1625742
- Alexander Gamburd, Eran Makover, On the genus of a random Riemann surface, Complex manifolds and hyperbolic geometry (Guanajuato, 2001) 311 (2002), 133-140, Amer. Math. Soc., Providence, RI Zbl1059.14040MR1940168
- Tsachik Gelander, Arie Levit, Counting commensurability classes of hyperbolic manifolds, Geom. Funct. Anal. 24 (2014), 1431-1447 MR3261631
- Étienne Ghys, Topologie des feuilles génériques, Ann. of Math. (2) 141 (1995), 387-422 Zbl0843.57026MR1324140
- R. I. Grigorchuk, Topological and metric types of surfaces that regularly cover a closed surface, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 498-536, 671 Zbl0686.57001MR1013710
- M. Gromov, I. Piatetski-Shapiro, Nonarithmetic groups in Lobachevsky spaces, Inst. Hautes Études Sci. Publ. Math. 66 (1988), 93-103 Zbl0649.22007MR932135
- Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, 152 (1999), Birkhäuser Boston, Inc., Boston, MA Zbl0953.53002MR1699320
- David Kazhdan, Some applications of the Weil representation, J. Analyse Mat. 32 (1977), 235-248 Zbl0445.22018MR492089
- Jian-Shu Li, John J. Millson, On the first Betti number of a hyperbolic manifold with an arithmetic fundamental group, Duke Math. J. 71 (1993), 365-401 Zbl0798.11019MR1233441
- Alexander Lubotzky, Free quotients and the first Betti number of some hyperbolic manifolds, Transform. Groups 1 (1996), 71-82 Zbl0876.22015MR1390750
- Alexander Lubotzky, Dan Segal, Subgroup growth, 212 (2003), Birkhäuser Verlag, Basel Zbl1071.20033MR1978431
- Colin Maclachlan, Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, 219 (2003), Springer-Verlag, New York Zbl1025.57001MR1937957
- Maryam Mirzakhani, Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus, J. Differential Geom. 94 (2013), 267-300 Zbl1270.30014MR3080483
- Hossein Namazi, Pekka Pankka, Juan Souto, Distributional limits of Riemannian manifolds and graphs with sublinear genus growth, Geom. Funct. Anal. 24 (2014), 322-359 Zbl1291.53056MR3177385
- Amos Nevo, Robert J. Zimmer, A generalization of the intermediate factors theorem, J. Anal. Math. 86 (2002), 93-104 Zbl1015.22002MR1894478
- Shin Ohno, Takao Watanabe, Estimates of Hermite constants for algebraic number fields, Comment. Math. Univ. St. Paul. 50 (2001), 53-63 Zbl1004.11039MR1839965
- Jean-Pierre Otal, Eulalio Rosas, Pour toute surface hyperbolique de genre , Duke Math. J. 150 (2009), 101-115 Zbl1179.30041MR2560109
- Peter Petersen, Riemannian geometry, 171 (2006), Springer, New York Zbl1220.53002MR2243772
- Bram Petri, Random regular graphs and the systole of a random surface
- Jean Raimbault, Analytic, Reidemeister and homological torsion for congruence three–manifolds Zbl1250.57004
- Jean Raimbault, On the convergence of arithmetic orbifolds Zbl06437679
- Jean Raimbault, A note on maximal lattice growth in , Int. Math. Res. Not. 2013 (2013), 3722-3731 Zbl06437679MR3090707
- Ian Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963), 259-269 Zbl0156.22203MR143186
- Jonathan D. Rogawski, Automorphic representations of unitary groups in three variables, 123 (1990), Princeton University Press, Princeton, NJ Zbl0724.11031MR1081540
- Garrett Stuck, Robert J. Zimmer, Stabilizers for ergodic actions of higher rank semisimple groups, Ann. of Math. (2) 139 (1994), 723-747 Zbl0836.22018MR1283875
- Michael E. Taylor, Partial differential equations I. Basic theory, 115 (2011), Springer, New York Zbl1206.35002MR2744150
- Dave Witte Morris, Introduction to Arithmetic Groups Zbl1319.22007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.