Discriminants of Chebyshev radical extensions

T. Alden Gassert[1]

  • [1] University of Colorado, Boulder Campus Box 395 Boulder, CO, USA 80309-0395

Journal de Théorie des Nombres de Bordeaux (2014)

  • Volume: 26, Issue: 3, page 607-633
  • ISSN: 1246-7405

Abstract

top
Let t be any integer and fix an odd prime . Let Φ ( x ) = T n ( x ) - t denote the n -fold composition of the Chebyshev polynomial of degree shifted by t . If this polynomial is irreducible, let K = ( θ ) , where θ is a root of Φ . We use a theorem of Dedekind in conjunction with previous results of the author to give conditions on t that ensure K is monogenic. For other values of t , we apply a result of Guàrdia, Montes, and Nart to obtain a formula for the discriminant of K and compute an integral basis for the ring of integers 𝒪 K .

How to cite

top

Gassert, T. Alden. "Discriminants of Chebyshev radical extensions." Journal de Théorie des Nombres de Bordeaux 26.3 (2014): 607-633. <http://eudml.org/doc/275794>.

@article{Gassert2014,
abstract = {Let $t$ be any integer and fix an odd prime $\ell $. Let $\Phi (x) = T_\ell ^n(x)-t$ denote the $n$-fold composition of the Chebyshev polynomial of degree $\ell $ shifted by $t$. If this polynomial is irreducible, let $K = \mathbb\{Q\}(\theta )$, where $\theta $ is a root of $\Phi $. We use a theorem of Dedekind in conjunction with previous results of the author to give conditions on $t$ that ensure $K$ is monogenic. For other values of $t$, we apply a result of Guàrdia, Montes, and Nart to obtain a formula for the discriminant of $K$ and compute an integral basis for the ring of integers $\{\cal O\}_K$.},
affiliation = {University of Colorado, Boulder Campus Box 395 Boulder, CO, USA 80309-0395},
author = {Gassert, T. Alden},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {12},
number = {3},
pages = {607-633},
publisher = {Société Arithmétique de Bordeaux},
title = {Discriminants of Chebyshev radical extensions},
url = {http://eudml.org/doc/275794},
volume = {26},
year = {2014},
}

TY - JOUR
AU - Gassert, T. Alden
TI - Discriminants of Chebyshev radical extensions
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/12//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 3
SP - 607
EP - 633
AB - Let $t$ be any integer and fix an odd prime $\ell $. Let $\Phi (x) = T_\ell ^n(x)-t$ denote the $n$-fold composition of the Chebyshev polynomial of degree $\ell $ shifted by $t$. If this polynomial is irreducible, let $K = \mathbb{Q}(\theta )$, where $\theta $ is a root of $\Phi $. We use a theorem of Dedekind in conjunction with previous results of the author to give conditions on $t$ that ensure $K$ is monogenic. For other values of $t$, we apply a result of Guàrdia, Montes, and Nart to obtain a formula for the discriminant of $K$ and compute an integral basis for the ring of integers ${\cal O}_K$.
LA - eng
UR - http://eudml.org/doc/275794
ER -

References

top
  1. W. Aitken, F. Hajir, and C. Maire, Finitely ramified iterated extensions Int. Math. Res. Not., 14, (2005), 855–880. Zbl1160.11356MR2146860
  2. A. Ash, J. Brakenhoff, and T. Zarrabi, Equality of polynomial and field discriminants, Experiment. Math., 16, (2007), 3, 367–374. Zbl1166.11035MR2367325
  3. L. Bartholdi, R. Grigorchuk, and V. Nekrashevych, From fractal groups to fractal sets, In Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, (2003), 25–118. Zbl1037.20040MR2091700
  4. H. Cohen, A course in computational algebraic number theory of Graduate Texts in Mathematics, 138, Springer-Verlag, Berlin, (1993). Zbl0786.11071MR1228206
  5. L. E. Fadil, J. Montes, and E. Nart, Newton polygons and p-integral bases, (2009), arxiv.org/pdf/0906.2629. 
  6. I. Gaál, Diophantine equations and power integral bases, Birkhäuser Boston Inc., Boston, MA, (2002), New computational methods. Zbl1016.11059MR1896601
  7. T. A. Gassert, Chebyshev action on finite fields, Disc. Math., (2014), 315–316:83–94. Zbl1278.05111MR3130359
  8. M.-N. Gras, Algorithmes numériques relatifs aux corps cubiques cycliques, in Séminaire Delange-Pisot-Poitou, 14e année, (1972/72), No. 2, Exp. No. G15, page 2. Secrétariat Mathématique, Paris, (1973). Zbl0338.12002MR389844
  9. J. Guàrdia, J. Montes, and E. Nart, Higher newton polygons and integral bases, (2009), arxiv.org/pdf/0902.3428. Zbl06371493MR3276340
  10. J. Guàrdia, J. Montes, and E. Nart, Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields J. Théor. Nombres Bordeaux, 23, (2011), 3, 667–696. Zbl1266.11131MR2861080
  11. J. Guàrdia, J. Montes, and E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc., 364, (2012), 1, 361–416. Zbl1252.11091MR2833586
  12. S.-I. Ih, A nondensity property of preperiodic points on Chebyshev dynamical systems, J. Number Theory, 131,(2011), 4, 750–780. Zbl1214.11070MR2769080
  13. S.-I. Ih and T. J. Tucker, A finiteness property for preperiodic points of Chebyshev polynomials, Int. J. Number Theory, 6, (2010), 5, 1011–1025. Zbl1258.37077MR2679454
  14. E. Kummer, Über die ergänzungssätze zu den allgemeinen reziprokcitäusgesetzten, Journal für die reine und angewandte Mathematik, 44, (1852), 93–146. 
  15. J. Liang, On the integral basis of the maximal real subfield of a cyclotomic field, J. Reine Angew. Math., 286/287, (1976), 223–226. Zbl0335.12015MR419402
  16. R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of Mathematics and its Applications 20, Cambridge University Press, Cambridge, second edition, (1997), with a foreword by P. M. Cohn. Zbl1139.11053MR1429394
  17. E. Lucas, Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier, Bull. Soc. Math. France, 6, (1878), 49–54. MR1503769
  18. T. Nakahara, On the indices and integral bases of noncyclic but abelian biquadratic fields, Arch. Math. (Basel), 41, (1983), 6, 504–508. Zbl0513.12005MR731633
  19. W. Narkiewicz, Elementary and analytic theory of algebraic numbers, Springer Monographs in Mathematics, Springer-Verlag, Berlin, third edition, (2004). Zbl1159.11039MR2078267
  20. T. J. Rivlin, Chebyshev polynomials, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New York, second edition, (1990). From approximation theory to algebra and number theory. Zbl0734.41029MR1060735
  21. S. I. A. Shah, Monogenesis of the rings of integers in a cyclic sextic field of a prime conductor, Rep. Fac. Sci. Engrg. Saga Univ. Math., 29, (2000), 9. Zbl0952.11026MR1769574
  22. J. H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, New York, (2007). Zbl1130.37001MR2316407

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.