Discriminants of Chebyshev radical extensions
- [1] University of Colorado, Boulder Campus Box 395 Boulder, CO, USA 80309-0395
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 3, page 607-633
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topGassert, T. Alden. "Discriminants of Chebyshev radical extensions." Journal de Théorie des Nombres de Bordeaux 26.3 (2014): 607-633. <http://eudml.org/doc/275794>.
@article{Gassert2014,
abstract = {Let $t$ be any integer and fix an odd prime $\ell $. Let $\Phi (x) = T_\ell ^n(x)-t$ denote the $n$-fold composition of the Chebyshev polynomial of degree $\ell $ shifted by $t$. If this polynomial is irreducible, let $K = \mathbb\{Q\}(\theta )$, where $\theta $ is a root of $\Phi $. We use a theorem of Dedekind in conjunction with previous results of the author to give conditions on $t$ that ensure $K$ is monogenic. For other values of $t$, we apply a result of Guàrdia, Montes, and Nart to obtain a formula for the discriminant of $K$ and compute an integral basis for the ring of integers $\{\cal O\}_K$.},
affiliation = {University of Colorado, Boulder Campus Box 395 Boulder, CO, USA 80309-0395},
author = {Gassert, T. Alden},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {12},
number = {3},
pages = {607-633},
publisher = {Société Arithmétique de Bordeaux},
title = {Discriminants of Chebyshev radical extensions},
url = {http://eudml.org/doc/275794},
volume = {26},
year = {2014},
}
TY - JOUR
AU - Gassert, T. Alden
TI - Discriminants of Chebyshev radical extensions
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/12//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 3
SP - 607
EP - 633
AB - Let $t$ be any integer and fix an odd prime $\ell $. Let $\Phi (x) = T_\ell ^n(x)-t$ denote the $n$-fold composition of the Chebyshev polynomial of degree $\ell $ shifted by $t$. If this polynomial is irreducible, let $K = \mathbb{Q}(\theta )$, where $\theta $ is a root of $\Phi $. We use a theorem of Dedekind in conjunction with previous results of the author to give conditions on $t$ that ensure $K$ is monogenic. For other values of $t$, we apply a result of Guàrdia, Montes, and Nart to obtain a formula for the discriminant of $K$ and compute an integral basis for the ring of integers ${\cal O}_K$.
LA - eng
UR - http://eudml.org/doc/275794
ER -
References
top- W. Aitken, F. Hajir, and C. Maire, Finitely ramified iterated extensions Int. Math. Res. Not., 14, (2005), 855–880. Zbl1160.11356MR2146860
- A. Ash, J. Brakenhoff, and T. Zarrabi, Equality of polynomial and field discriminants, Experiment. Math., 16, (2007), 3, 367–374. Zbl1166.11035MR2367325
- L. Bartholdi, R. Grigorchuk, and V. Nekrashevych, From fractal groups to fractal sets, In Fractals in Graz 2001, Trends Math., Birkhäuser, Basel, (2003), 25–118. Zbl1037.20040MR2091700
- H. Cohen, A course in computational algebraic number theory of Graduate Texts in Mathematics, 138, Springer-Verlag, Berlin, (1993). Zbl0786.11071MR1228206
- L. E. Fadil, J. Montes, and E. Nart, Newton polygons and p-integral bases, (2009), arxiv.org/pdf/0906.2629.
- I. Gaál, Diophantine equations and power integral bases, Birkhäuser Boston Inc., Boston, MA, (2002), New computational methods. Zbl1016.11059MR1896601
- T. A. Gassert, Chebyshev action on finite fields, Disc. Math., (2014), 315–316:83–94. Zbl1278.05111MR3130359
- M.-N. Gras, Algorithmes numériques relatifs aux corps cubiques cycliques, in Séminaire Delange-Pisot-Poitou, 14e année, (1972/72), No. 2, Exp. No. G15, page 2. Secrétariat Mathématique, Paris, (1973). Zbl0338.12002MR389844
- J. Guàrdia, J. Montes, and E. Nart, Higher newton polygons and integral bases, (2009), arxiv.org/pdf/0902.3428. Zbl06371493MR3276340
- J. Guàrdia, J. Montes, and E. Nart, Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields J. Théor. Nombres Bordeaux, 23, (2011), 3, 667–696. Zbl1266.11131MR2861080
- J. Guàrdia, J. Montes, and E. Nart, Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc., 364, (2012), 1, 361–416. Zbl1252.11091MR2833586
- S.-I. Ih, A nondensity property of preperiodic points on Chebyshev dynamical systems, J. Number Theory, 131,(2011), 4, 750–780. Zbl1214.11070MR2769080
- S.-I. Ih and T. J. Tucker, A finiteness property for preperiodic points of Chebyshev polynomials, Int. J. Number Theory, 6, (2010), 5, 1011–1025. Zbl1258.37077MR2679454
- E. Kummer, Über die ergänzungssätze zu den allgemeinen reziprokcitäusgesetzten, Journal für die reine und angewandte Mathematik, 44, (1852), 93–146.
- J. Liang, On the integral basis of the maximal real subfield of a cyclotomic field, J. Reine Angew. Math., 286/287, (1976), 223–226. Zbl0335.12015MR419402
- R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of Mathematics and its Applications 20, Cambridge University Press, Cambridge, second edition, (1997), with a foreword by P. M. Cohn. Zbl1139.11053MR1429394
- E. Lucas, Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier, Bull. Soc. Math. France, 6, (1878), 49–54. MR1503769
- T. Nakahara, On the indices and integral bases of noncyclic but abelian biquadratic fields, Arch. Math. (Basel), 41, (1983), 6, 504–508. Zbl0513.12005MR731633
- W. Narkiewicz, Elementary and analytic theory of algebraic numbers, Springer Monographs in Mathematics, Springer-Verlag, Berlin, third edition, (2004). Zbl1159.11039MR2078267
- T. J. Rivlin, Chebyshev polynomials, Pure and Applied Mathematics (New York), John Wiley & Sons Inc., New York, second edition, (1990). From approximation theory to algebra and number theory. Zbl0734.41029MR1060735
- S. I. A. Shah, Monogenesis of the rings of integers in a cyclic sextic field of a prime conductor, Rep. Fac. Sci. Engrg. Saga Univ. Math., 29, (2000), 9. Zbl0952.11026MR1769574
- J. H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, New York, (2007). Zbl1130.37001MR2316407
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.