Waring’s problem for Beatty sequences and a local to global principle
William D. Banks[1]; Ahmet M. Güloğlu[2]; Robert C. Vaughan[3]
- [1] Department of Mathematics University of Missouri Columbia, MO 65211 USA
- [2] Department of Mathematics Bilkent University 06800 Bilkent, Ankara, TURKEY
- [3] Department of Mathematics Pennsylvania State University University Park, PA 16802-6401 USA
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 1, page 1-16
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBanks, William D., Güloğlu, Ahmet M., and Vaughan, Robert C.. "Waring’s problem for Beatty sequences and a local to global principle." Journal de Théorie des Nombres de Bordeaux 26.1 (2014): 1-16. <http://eudml.org/doc/275796>.
@article{Banks2014,
abstract = {We investigate in various ways the representation of a large natural number $N$ as a sum of $s$ positive $k$-th powers of numbers from a fixed Beatty sequence. Inter alia, a very general form of the local to global principle is established in additive number theory. Although the proof is very short, it depends on a deep theorem of M. Kneser.},
affiliation = {Department of Mathematics University of Missouri Columbia, MO 65211 USA; Department of Mathematics Bilkent University 06800 Bilkent, Ankara, TURKEY; Department of Mathematics Pennsylvania State University University Park, PA 16802-6401 USA},
author = {Banks, William D., Güloğlu, Ahmet M., Vaughan, Robert C.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Waring's problem; Beatty sequence; Hardy-Littlewood method},
language = {eng},
month = {4},
number = {1},
pages = {1-16},
publisher = {Société Arithmétique de Bordeaux},
title = {Waring’s problem for Beatty sequences and a local to global principle},
url = {http://eudml.org/doc/275796},
volume = {26},
year = {2014},
}
TY - JOUR
AU - Banks, William D.
AU - Güloğlu, Ahmet M.
AU - Vaughan, Robert C.
TI - Waring’s problem for Beatty sequences and a local to global principle
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/4//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 1
SP - 1
EP - 16
AB - We investigate in various ways the representation of a large natural number $N$ as a sum of $s$ positive $k$-th powers of numbers from a fixed Beatty sequence. Inter alia, a very general form of the local to global principle is established in additive number theory. Although the proof is very short, it depends on a deep theorem of M. Kneser.
LA - eng
KW - Waring's problem; Beatty sequence; Hardy-Littlewood method
UR - http://eudml.org/doc/275796
ER -
References
top- K. D. Boklan, The asymptotic formula in Waring’s problem. Mathematika 41 (1994), no. 2, 329–347. Zbl0815.11050MR1316613
- H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities. Second edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2005. Zbl1125.11018MR2152164
- H. Halberstam and H.-E. Richert, Sieve methods. London Mathematical Society Monographs, No. 4. Academic Press, London-New York, 1974. Zbl0298.10026MR424730
- H. Halberstam and K. F. Roth, Sequences. Second edition. Springer-Verlag, New York-Berlin, 1983. Zbl0498.10001MR687978
- D. Hilbert, Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl Potenzen (Waringsches Problem). Math. Ann. 67 (1909), no. 3, 281–300. Zbl40.0236.03MR1511530
- H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I. Classical theory. Cambridge Studies in Advanced Mathematics, 97. Cambridge University Press, Cambridge, 2007. Zbl1142.11001MR2378655
- E. C. Titchmarsh, The theory of the Riemann zeta-function. Second edition. The Clarendon Press, Oxford University Press, New York, 1986. Zbl0601.10026
- R. C. Vaughan, On Waring’s problem for cubes. J. Reine Angew. Math. 365 (1986), 122–170. Zbl0574.10046MR826156
- R. C. Vaughan, On Waring’s problem for smaller exponents II. Mathematika 33 (1986), no. 1, 6–22. Zbl0601.10037MR859494
- R. C. Vaughan, A new iterative method in Waring’s problem. Acta Math. 162 (1989), no. 1-2, 1–71. Zbl0665.10033
- R. C. Vaughan, The Hardy-Littlewood method. Second edition. Cambridge Tracts in Mathematics, 125. Cambridge University Press, Cambridge, 1997. Zbl0868.11046MR1435742
- R. C. Vaughan, On generating functions in additive number theory, I, in Analytic Number Theory, Essays in Honour of Klaus Roth, 436–448. Cambridge Univ. Press, Cambridge, 2009. Zbl1221.11174
- R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem, III: Eighth powers. Philos. Trans. Roy. Soc. London Ser. A 345 (1993), no. 1676, 385–396. Zbl0849.11077MR1253500
- R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem, II: Sixth powers. Duke Math. J. 76 (1994), no. 3, 683–710. Zbl0849.11076MR1309326
- R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem. Acta Math. 174 (1995), no. 2, 147–240. Zbl0849.11075MR1351319
- R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem, IV: Higher powers. Acta Arith. 94 (2000), no. 3, 203–285. Zbl0972.11092MR1776896
- E. Waring, Meditationes algebraicæ. Cambridge, England, 1770.
- T. D. Wooley, Vinogradov’s mean value theorem via efficient congruencing. Ann. Math., to appear. Zbl1267.11105MR3039678
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.