Waring’s problem for Beatty sequences and a local to global principle

William D. Banks[1]; Ahmet M. Güloğlu[2]; Robert C. Vaughan[3]

  • [1] Department of Mathematics University of Missouri Columbia, MO 65211 USA
  • [2] Department of Mathematics Bilkent University 06800 Bilkent, Ankara, TURKEY
  • [3] Department of Mathematics Pennsylvania State University University Park, PA 16802-6401 USA

Journal de Théorie des Nombres de Bordeaux (2014)

  • Volume: 26, Issue: 1, page 1-16
  • ISSN: 1246-7405

Abstract

top
We investigate in various ways the representation of a large natural number N as a sum of s positive k -th powers of numbers from a fixed Beatty sequence. Inter alia, a very general form of the local to global principle is established in additive number theory. Although the proof is very short, it depends on a deep theorem of M. Kneser.

How to cite

top

Banks, William D., Güloğlu, Ahmet M., and Vaughan, Robert C.. "Waring’s problem for Beatty sequences and a local to global principle." Journal de Théorie des Nombres de Bordeaux 26.1 (2014): 1-16. <http://eudml.org/doc/275796>.

@article{Banks2014,
abstract = {We investigate in various ways the representation of a large natural number $N$ as a sum of $s$ positive $k$-th powers of numbers from a fixed Beatty sequence. Inter alia, a very general form of the local to global principle is established in additive number theory. Although the proof is very short, it depends on a deep theorem of M. Kneser.},
affiliation = {Department of Mathematics University of Missouri Columbia, MO 65211 USA; Department of Mathematics Bilkent University 06800 Bilkent, Ankara, TURKEY; Department of Mathematics Pennsylvania State University University Park, PA 16802-6401 USA},
author = {Banks, William D., Güloğlu, Ahmet M., Vaughan, Robert C.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Waring's problem; Beatty sequence; Hardy-Littlewood method},
language = {eng},
month = {4},
number = {1},
pages = {1-16},
publisher = {Société Arithmétique de Bordeaux},
title = {Waring’s problem for Beatty sequences and a local to global principle},
url = {http://eudml.org/doc/275796},
volume = {26},
year = {2014},
}

TY - JOUR
AU - Banks, William D.
AU - Güloğlu, Ahmet M.
AU - Vaughan, Robert C.
TI - Waring’s problem for Beatty sequences and a local to global principle
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/4//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 1
SP - 1
EP - 16
AB - We investigate in various ways the representation of a large natural number $N$ as a sum of $s$ positive $k$-th powers of numbers from a fixed Beatty sequence. Inter alia, a very general form of the local to global principle is established in additive number theory. Although the proof is very short, it depends on a deep theorem of M. Kneser.
LA - eng
KW - Waring's problem; Beatty sequence; Hardy-Littlewood method
UR - http://eudml.org/doc/275796
ER -

References

top
  1. K. D. Boklan, The asymptotic formula in Waring’s problem. Mathematika 41 (1994), no. 2, 329–347. Zbl0815.11050MR1316613
  2. H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities. Second edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2005. Zbl1125.11018MR2152164
  3. H. Halberstam and H.-E. Richert, Sieve methods. London Mathematical Society Monographs, No. 4. Academic Press, London-New York, 1974. Zbl0298.10026MR424730
  4. H. Halberstam and K. F. Roth, Sequences. Second edition. Springer-Verlag, New York-Berlin, 1983. Zbl0498.10001MR687978
  5. D. Hilbert, Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n t e r Potenzen (Waringsches Problem). Math. Ann. 67 (1909), no. 3, 281–300. Zbl40.0236.03MR1511530
  6. H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I. Classical theory. Cambridge Studies in Advanced Mathematics, 97. Cambridge University Press, Cambridge, 2007. Zbl1142.11001MR2378655
  7. E. C. Titchmarsh, The theory of the Riemann zeta-function. Second edition. The Clarendon Press, Oxford University Press, New York, 1986. Zbl0601.10026
  8. R. C. Vaughan, On Waring’s problem for cubes. J. Reine Angew. Math. 365 (1986), 122–170. Zbl0574.10046MR826156
  9. R. C. Vaughan, On Waring’s problem for smaller exponents II. Mathematika 33 (1986), no. 1, 6–22. Zbl0601.10037MR859494
  10. R. C. Vaughan, A new iterative method in Waring’s problem. Acta Math. 162 (1989), no. 1-2, 1–71. Zbl0665.10033
  11. R. C. Vaughan, The Hardy-Littlewood method. Second edition. Cambridge Tracts in Mathematics, 125. Cambridge University Press, Cambridge, 1997. Zbl0868.11046MR1435742
  12. R. C. Vaughan, On generating functions in additive number theory, I, in Analytic Number Theory, Essays in Honour of Klaus Roth, 436–448. Cambridge Univ. Press, Cambridge, 2009. Zbl1221.11174
  13. R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem, III: Eighth powers. Philos. Trans. Roy. Soc. London Ser. A 345 (1993), no. 1676, 385–396. Zbl0849.11077MR1253500
  14. R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem, II: Sixth powers. Duke Math. J. 76 (1994), no. 3, 683–710. Zbl0849.11076MR1309326
  15. R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem. Acta Math. 174 (1995), no. 2, 147–240. Zbl0849.11075MR1351319
  16. R. C. Vaughan and T. D. Wooley, Further improvements in Waring’s problem, IV: Higher powers. Acta Arith. 94 (2000), no. 3, 203–285. Zbl0972.11092MR1776896
  17. E. Waring, Meditationes algebraicæ. Cambridge, England, 1770. 
  18. T. D. Wooley, Vinogradov’s mean value theorem via efficient congruencing. Ann. Math., to appear. Zbl1267.11105MR3039678

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.