Asymptotic Stability of Zakharov-Kuznetsov solitons
Didier Pilod[1]
- [1] Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, CEP: 21945-970, Rio de Janeiro, RJ, Brazil
Séminaire Laurent Schwartz — EDP et applications (2014-2015)
- page 1-12
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topPilod, Didier. "Asymptotic Stability of Zakharov-Kuznetsov solitons." Séminaire Laurent Schwartz — EDP et applications (2014-2015): 1-12. <http://eudml.org/doc/275797>.
@article{Pilod2014-2015,
abstract = {In this report, we review the proof of the asymptotic stability of the Zakharov-Kuznetsov solitons in dimension two. Those results were recently obtained in a joint work with Raphaël Côte, Claudio Muñoz and Gideon Simpson.},
affiliation = {Instituto de Matemática, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, CEP: 21945-970, Rio de Janeiro, RJ, Brazil},
author = {Pilod, Didier},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {eng},
pages = {1-12},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Asymptotic Stability of Zakharov-Kuznetsov solitons},
url = {http://eudml.org/doc/275797},
year = {2014-2015},
}
TY - JOUR
AU - Pilod, Didier
TI - Asymptotic Stability of Zakharov-Kuznetsov solitons
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 12
AB - In this report, we review the proof of the asymptotic stability of the Zakharov-Kuznetsov solitons in dimension two. Those results were recently obtained in a joint work with Raphaël Côte, Claudio Muñoz and Gideon Simpson.
LA - eng
UR - http://eudml.org/doc/275797
ER -
References
top- H. Beresticky and P. L. Lions, Nonlinear scalar field equations, Arch. Rational Mech. Anal., 82 (1983), 313–345. Zbl0533.35029MR695535
- F. Béthuel, P. Gravejat and D. Smets, Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation, to appear in Ann. Sci. Éc. Norm. Supér., (2014) http://arxiv.org/abs/1212.5027. Zbl1337.35131
- R. Côte, “Solitons et Dispersion”, Habilitation à Diriger des Recherches, Université de cergy-Pontoise, 2014.
- R. Côte, C. Muñoz, D. Pilod and G. Simpson, Asymptotic stability of high-dimensional Zakharov-Kuznetsov solitons, preprint (2014), http://arxiv.org/abs/1406.3196. Zbl1334.35276
- A. de Bouard, Stability and instability of some nonlinear dispersive solitary waves in higher dimension, Proc. Royal Soc. Edinburgh, 126 (1996), 89–112. Zbl0861.35094MR1378834
- K. El Dika, Asymptotic Stability of solitary waves for the Benjamin-Bona-Mahony equation, Disc. Cont. Dyn. Syst., 13 (2005), 583–622. Zbl1083.35019MR2152333
- A. V. Faminskii, The Cauchy problem for the Zakharov-Kuznetsov equation, Differential Equations 31 (1995), no. 6, 1002–1012. Zbl0863.35097MR1383936
- P. Gravejat and D. Smets, Asymptotic stability of the black soliton for the Gross-Pitaevskii equation, Proc. London Math. Soc. (2015) http://dx.doi.org/10.1112/plms/pdv025. Zbl1326.35346
- A. Grünrock and S. Herr, The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Disc. Contin. Dyn. Syst. Ser. A, 34 (2014), 2061–2068. Zbl1280.35124MR3124726
- D. Han-Kwan, From Vlasov-Poisson to Korteweg-de Vries and Zakharov-Kuznetsov, Comm. Math. Phys., 324 (2013), 961–993. Zbl1284.35439MR3123542
- T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Studies in Applied Mathematics, 93-128, Adv. Appl. Math. Suppl. Stud., 8, Academic Press, New York, 1983. Zbl0549.34001MR759907
- C. E. Kenig and Y. Martel, Asymptotic stability of solitons for the Benjamin-Ono equation, Rev. Mat. Iberoamericana, 25 (2009), no. 3, 909–970. Zbl1247.35133MR2590690
- E. A. Kuznetsov and V. E. Zakharov, On three dimensional solitons, Sov. Phys. JETP., 39 (1974), 285–286.
- M. K. Kwong, Uniqueness of positive radial solutions of in , Arch. Rational Mech. Anal., 105 (1989), 243–266. Zbl0676.35032MR969899
- D. Lannes, F. Linares and J.-C. Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, Prog. Nonlinear Diff. Eq. Appl., 84 (2013), 181–213. Zbl1273.35263MR3185896
- C. Laurent and Y. Martel, Smoothness and exponential decay of -compact solutions of the generalized KdV equations, Comm. Part. Diff. Eq., 29 (2005), 157–171. Zbl1140.35558MR2038148
- F. Linares and A. Pastor, Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 41 (2009), no. 4, 1323–1339. Zbl1197.35242MR2540268
- Y. Martel, Linear Problems related to asymptotic stability of solitons of the generalized KdV equations, SIAM J. Math. Anal., 38 (2006), 759–781. Zbl1126.35055MR2262941
- Y. Martel and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal., 157 (2001), 219–254. Zbl0981.35073MR1826966
- Y. Martel and F. Merle, Asymptotic Stability of solitons of the subcritical gKdV equations revisited, Nonlinearity, 18 (2005), 55–80. Zbl1064.35171MR2109467
- Y. Martel and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann., 341 (2008), 391–427. Zbl1153.35068MR2385662
- Y. Martel, F. Merle, and T.P. Tsai, Stability and asymptotic stability in the energy space of the sum of solitons for subcritical gKdV equations, Comm. Math. Phys., 231 (2002) 347–373. Zbl1017.35098MR1946336
- L. Molinet and D. Pilod, Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré, Annal. Non., 32 (2015), 347–371. Zbl1320.35106MR3325241
- R. L. Pego and M. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys., 164 (1994), 305–349. Zbl0805.35117MR1289328
- F. Ribaud and S. Vento, Well-posedness results for the 3D Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 44 (2012), 2289–2304. Zbl1251.35135MR3023376
- M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), 472–491. Zbl0583.35028MR783974
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.