# Growing Sobolev norms for the cubic defocusing Schrödinger equation

Zaher Hani^{[1]}; Benoit Pausader^{[2]}; Nikolay Tzvetkov^{[3]}; Nicola Visciglia^{[4]}

- [1] Courant Institute of Mathematical Sciences 251 Mercer Street New York NY 10012
- [2] Université Paris-Nord
- [3] Université Cergy-Pontoise
- [4] Universita di Pisa

Séminaire Laurent Schwartz — EDP et applications (2013-2014)

- Volume: 3, page 1-11
- ISSN: 2266-0607

## Access Full Article

top## Abstract

top## How to cite

topHani, Zaher, et al. "Growing Sobolev norms for the cubic defocusing Schrödinger equation." Séminaire Laurent Schwartz — EDP et applications 3 (2013-2014): 1-11. <http://eudml.org/doc/275798>.

@article{Hani2013-2014,

abstract = {This text aims to describe results of the authors on the long time behavior of NLS on product spaces with a particular emphasis on the existence of solutions with growing higher Sobolev norms.},

affiliation = {Courant Institute of Mathematical Sciences 251 Mercer Street New York NY 10012; Université Paris-Nord; Université Cergy-Pontoise; Universita di Pisa},

author = {Hani, Zaher, Pausader, Benoit, Tzvetkov, Nikolay, Visciglia, Nicola},

journal = {Séminaire Laurent Schwartz — EDP et applications},

keywords = {toroidal space; resonant system; strong solutions},

language = {eng},

pages = {1-11},

publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},

title = {Growing Sobolev norms for the cubic defocusing Schrödinger equation},

url = {http://eudml.org/doc/275798},

volume = {3},

year = {2013-2014},

}

TY - JOUR

AU - Hani, Zaher

AU - Pausader, Benoit

AU - Tzvetkov, Nikolay

AU - Visciglia, Nicola

TI - Growing Sobolev norms for the cubic defocusing Schrödinger equation

JO - Séminaire Laurent Schwartz — EDP et applications

PY - 2013-2014

PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique

VL - 3

SP - 1

EP - 11

AB - This text aims to describe results of the authors on the long time behavior of NLS on product spaces with a particular emphasis on the existence of solutions with growing higher Sobolev norms.

LA - eng

KW - toroidal space; resonant system; strong solutions

UR - http://eudml.org/doc/275798

ER -

## References

top- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal.3, (1993), 107–156. Zbl0787.35097MR1209299
- J. Bourgain, On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE, Internat. Math. Res. Notices 1996, no. 6, 277–304. Zbl0934.35166MR1386079
- J. Bourgain, Problems in Hamiltonian PDE’s, Geom. Funct. Anal., 2000. (Special volume, Part I), 32–56. Zbl1050.35016MR1826248
- J. Bourgain, Refinements of Strichartz inequality and applications to $2$D-NLS with critical nonlinearity, Int. Math. Res. Not., (1998), 253-283. Zbl0917.35126MR1616917
- J. Bourgain, Moment inequalities for trigonometric polynomials with spectrum in curved hypersurfaces. Israel J. Math., 193 (2013), no. 1, 441–458. Zbl1271.42039MR3038558
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001), 649–669. Zbl1002.35113MR1871414
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math., 181 (2010), no. 1, 39–113. Zbl1197.35265MR2651381
- Z. Hani, Long-time strong instability and unbounded orbits for some periodic nonlinear Schödinger equations, Arch. Rat. Mech. Anal., to appear (http://dx.doi.org/10.1007/s00205-013-0689-6). Zbl1293.35298MR3158811
- Z. Hani, B. Pausader. N. Tzvetkov. N. Visciglia, Modified scattering for the cubic Schrödinger equation on product spaces and applications, Preprint 2013. Zbl1326.35348
- S. Herr, D. Tataru, and N. Tzvetkov, Strichartz estimates for partially periodic solutions to Schrödinger equations in $4d$ and applications, J. Ang. Math., to appear, http://dx.doi.org/10.1515/crelle-2012-0013. Zbl1293.35299
- M. Guardia and V. Kaloshin, Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation, J. Eur. Math. Soc, to appear. Zbl1311.35284
- J. Kato and F. Pusateri, A new proof of long range scattering for critical nonlinear Schrödinger equations, J. Diff. Int. Equ., Vol. 24, no. 9–10 (2011). Zbl1249.35307MR2850346
- T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Comm. Math. Phys., 139 (1991), pp. 479–493. Zbl0742.35043MR1121130

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.