Earnshaw’s Theorem in Electrostatics and a Conditional Converse to Dirichlet’s Theorem

Jeffrey Rauch[1]

  • [1] Department of Mathematics University of Michigan Ann Arbor 48109 MI USA

Séminaire Laurent Schwartz — EDP et applications (2013-2014)

  • page 1-10
  • ISSN: 2266-0607

Abstract

top
For the dynamics x ' ' = - x V ( x ) , an equilibrium point x ̲ are always unstable when on a neighborhood of x ̲ the non constant V satisfies P ( x , ) V = 0 for a real second order elliptic P . The proof uses a result of Kozlov [6].

How to cite

top

Rauch, Jeffrey. "Earnshaw’s Theorem in Electrostatics and a Conditional Converse to Dirichlet’s Theorem." Séminaire Laurent Schwartz — EDP et applications (2013-2014): 1-10. <http://eudml.org/doc/275809>.

@article{Rauch2013-2014,
abstract = {For the dynamics $x^\{\prime \prime \} = -\nabla _xV(x)$, an equilibrium point $\underline\{x\}$ are always unstable when on a neighborhood of $\underline\{x\}$ the non constant $V$ satisfies $P(x,\partial )V=0$ for a real second order elliptic $P$. The proof uses a result of Kozlov [6].},
affiliation = {Department of Mathematics University of Michigan Ann Arbor 48109 MI USA},
author = {Rauch, Jeffrey},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {eng},
pages = {1-10},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Earnshaw’s Theorem in Electrostatics and a Conditional Converse to Dirichlet’s Theorem},
url = {http://eudml.org/doc/275809},
year = {2013-2014},
}

TY - JOUR
AU - Rauch, Jeffrey
TI - Earnshaw’s Theorem in Electrostatics and a Conditional Converse to Dirichlet’s Theorem
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2013-2014
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 10
AB - For the dynamics $x^{\prime \prime } = -\nabla _xV(x)$, an equilibrium point $\underline{x}$ are always unstable when on a neighborhood of $\underline{x}$ the non constant $V$ satisfies $P(x,\partial )V=0$ for a real second order elliptic $P$. The proof uses a result of Kozlov [6].
LA - eng
UR - http://eudml.org/doc/275809
ER -

References

top
  1. G. Allaire and J. Rauch, In preparation. 
  2. V. Arnold, Mathematical developments arising from Hilbert problems, Proceedings of Symposia in Pure Mathematics (F. Browder, Ed.), Amer. Math. Soc., Providence, R.I., 1976. MR419125
  3. S. Earnshaw, On the nature of the molecular forces which regulate the constitution of the luminferous ether, Trans. Cambridge Phil. Soc. 7, (1842) 97-112. 
  4. P. Hagedorn, Die umkehrung der stabilitätssätze von Lagrange-Dirichlet und Routh, Arch. Rational Mech. Anal. 42 (1971) 281-316. Zbl0222.70024MR343717
  5. V. Kozlov, Asymptotic solutions of equations of classical mechanics, J. Appl. Math. Mech. 46 (1982) 454-457. Zbl0522.70020MR714856
  6. V. Kozlov, Asymptotic motions and the inversion of the Lagrange-Dirichlet theorem, J. Appl. Math. Mech. 50 (1987) 719-725. Zbl0631.70018MR922185
  7. M. Laloy and K. Peiffer, On the instability of equilibrium when the potential has a non-strict local minimum, Arch. Rational Mech. Anal. 78 (1982) 213-222. Zbl0494.70021MR650844
  8. J. C. Maxwell, A Treatise on Electricity and Magnetism Vol. I., (From the 1891 ed.) Dover Publ. 1954. Zbl0056.20612MR63293
  9. P. Negrini, On the inversion of the Lagrange-Dirichlet Theorem, Resenhas 2 (1995), no. 1, 83-114. Zbl0848.34036MR1358331
  10. S. Taliaferro, Stability for two dimensional analytic potentials, J. Differential Equations 35 (1980) 248-265. Zbl0398.34047MR561980
  11. S. Taliaferro, Instability of an equilibrium in a potential field. Arch. Rational Mech. Anal. 109 no.2 (1990) 183-194. Zbl0679.70003MR1022514

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.