Stable soliton resolution for equivariant wave maps exterior to a ball
- [1] Department of Mathematics The University of California, Berkeley 970 Evans Hall #3840 Berkeley, CA 94720 U.S.A.
Séminaire Laurent Schwartz — EDP et applications (2014-2015)
- page 1-11
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topLawrie, Andrew. "Stable soliton resolution for equivariant wave maps exterior to a ball." Séminaire Laurent Schwartz — EDP et applications (2014-2015): 1-11. <http://eudml.org/doc/275810>.
@article{Lawrie2014-2015,
abstract = {In this report we review the proof of the stable soliton resolution conjecture for equivariant wave maps exterior to a ball in $\mathbb\{R\}^3$ and taking values in the $3$-sphere. This is joint work with Carlos Kenig, Baoping Liu, and Wilhelm Schlag.},
affiliation = {Department of Mathematics The University of California, Berkeley 970 Evans Hall #3840 Berkeley, CA 94720 U.S.A.},
author = {Lawrie, Andrew},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {eng},
pages = {1-11},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Stable soliton resolution for equivariant wave maps exterior to a ball},
url = {http://eudml.org/doc/275810},
year = {2014-2015},
}
TY - JOUR
AU - Lawrie, Andrew
TI - Stable soliton resolution for equivariant wave maps exterior to a ball
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 11
AB - In this report we review the proof of the stable soliton resolution conjecture for equivariant wave maps exterior to a ball in $\mathbb{R}^3$ and taking values in the $3$-sphere. This is joint work with Carlos Kenig, Baoping Liu, and Wilhelm Schlag.
LA - eng
UR - http://eudml.org/doc/275810
ER -
References
top- H. Bahouri and P. Gérard. High frequency approximation of solutions to critical nonlinear wave equations. Amer. J. Math., 121:131–175, 1999. Zbl0919.35089MR1705001
- B. Balakrishna, V. Schechter Sanyuk, J., and A. Subbaraman. Cutoff quantization and the skyrmion. Physical Review D, 45(1):344–351, 1992.
- P. Bizoń, T. Chmaj, and M. Maliborski. Equivariant wave maps exterior to a ball. Nonlinearity, 25(5):1299–1309, 2012. Zbl1243.35117MR2914140
- T. Duyckaerts, C. Kenig, and F. Merle. Universality of the blow-up profile for small radial type blow-up solutions of the energy critical wave equation. J. Eur math. Soc. (JEMS), 13(3):533–599, 2011. Zbl1230.35067MR2781926
- T. Duyckaerts, C. Kenig, and F. Merle. Profiles of bounded radial solutions of the focusing, energy-critical wave equation. Geom. Funct. Anal., 22(3):639–698, 2012. Zbl1258.35148MR2972605
- T. Duyckaerts, C. Kenig, and F. Merle. Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: the nonradial case. J. Eur. Math. Soc. (JEMS), 14(5):1389–1454, 2012. Zbl1282.35088MR2966655
- T. Duyckaerts, C. Kenig, and F. Merle. Classification of radial solutions of the focusing, energy critical wave equation. Cambridge Journal of Mathematics, 1(1):75–144, 2013. Zbl1308.35143MR3272053
- T. Duyckaerts, C. Kenig, and F. Merle. Scattering for radial, bounded solutions of focusing supercritical wave equations. To appear in I.M.R.N, Preprint, 2012. Zbl1310.35171MR3158532
- K. Hidano, J. Metcalfe, H. Smith, C. Sogge, and Y. Zhou. On abstract Strichartz estimates and the Strauss conjecture for nontrapping obstacles. Trans. Amer. Math. Soc., 362(5):2789–2809, 2010. Zbl1193.35100MR2584618
- C. Kenig, A. Lawrie, B. Liu, and W. Schlag. Channels of energy for the linear radial wave equation. Preprint, 2014. Zbl1331.35209
- C. Kenig, A. Lawrie, B. Liu, and W. Schlag. Stable soliton resolution for exterior wave maps in all equivariance classes. Preprint, 2014. Zbl1331.35076
- C. Kenig, A. Lawrie, and W. Schlag. Relaxation of wave maps exterior to a ball to harmonic maps for all data. Geom. Funct. Anal., 24(2):610–647, 2014. Zbl1288.35356MR3192036
- C. Kenig and F. Merle. Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math., 166(3):645–675, 2006. Zbl1115.35125MR2257393
- C. Kenig and F. Merle. Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math., 201(2):147–212, 2008. Zbl1183.35202MR2461508
- A. Lawrie and W. Schlag. Scattering for wave maps exterior to a ball. Advances in Mathematics, 232(1):57–97, 2013. Zbl1264.35045MR2989977
- J. Shatah. Weak solutions and development of singularities of the -model. Comm. Pure Appl. Math., 41(4):459–469, 1988. Zbl0686.35081MR933231
- J. Shatah and M. Struwe. Geometric wave equations. Courant Lecture notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, New York. American Mathematical Society, Providence RI, 1998. Zbl1051.35500MR1674843
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.