Trivial points on towers of curves

Xavier Xarles[1]

  • [1] Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra, Barcelona, Spain

Journal de Théorie des Nombres de Bordeaux (2013)

  • Volume: 25, Issue: 2, page 477-498
  • ISSN: 1246-7405

Abstract

top
In order to study the behavior of the points in a tower of curves, we introduce and study trivial points on towers of curves, and we discuss their finiteness over number fields. We relate the problem of proving that the only rational points are the trivial ones at some level of the tower, to the unboundeness of the gonality of the curves in the tower, which we show under some hypothesis.

How to cite

top

Xarles, Xavier. "Trivial points on towers of curves." Journal de Théorie des Nombres de Bordeaux 25.2 (2013): 477-498. <http://eudml.org/doc/275811>.

@article{Xarles2013,
abstract = {In order to study the behavior of the points in a tower of curves, we introduce and study trivial points on towers of curves, and we discuss their finiteness over number fields. We relate the problem of proving that the only rational points are the trivial ones at some level of the tower, to the unboundeness of the gonality of the curves in the tower, which we show under some hypothesis.},
affiliation = {Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra, Barcelona, Spain},
author = {Xarles, Xavier},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {trivial point; tower; curve; number field; rational point; gonality},
language = {eng},
month = {9},
number = {2},
pages = {477-498},
publisher = {Société Arithmétique de Bordeaux},
title = {Trivial points on towers of curves},
url = {http://eudml.org/doc/275811},
volume = {25},
year = {2013},
}

TY - JOUR
AU - Xarles, Xavier
TI - Trivial points on towers of curves
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/9//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 2
SP - 477
EP - 498
AB - In order to study the behavior of the points in a tower of curves, we introduce and study trivial points on towers of curves, and we discuss their finiteness over number fields. We relate the problem of proving that the only rational points are the trivial ones at some level of the tower, to the unboundeness of the gonality of the curves in the tower, which we show under some hypothesis.
LA - eng
KW - trivial point; tower; curve; number field; rational point; gonality
UR - http://eudml.org/doc/275811
ER -

References

top
  1. Abramovich. D., A linear lower bound on the gonality of modular curves, International Math. Res. Notices 20 (1996), 1005–1011. Zbl0878.14019MR1422373
  2. Baker, M., Specialization of Linear Systems from Curves to Graphs, Algebra and Number Theory 2, no. 6 (2008), 613–653. Zbl1162.14018MR2448666
  3. Baker, M., Norine, S., Riemann-Roch and Abel-Jacobi Theory on a Finite Graph, Advances in Mathematics, 215 (2007), 766–788. Zbl1124.05049MR2355607
  4. Bekka, B., de la Harpe, P., Valette, A., Kazhdan’s property (T), New Mathematical Monographs, 11, Cambridge University Press, 2008. Zbl1146.22009MR2415834
  5. Bourgain, J., Gamburd, A.Expansion and random walks in S L d ( / p n ) :I, J. Eur. Math. Soc. 10, (2008), 987–1011. Zbl1193.20059MR2443926
  6. Bourgain, J., Gamburd, A.Expansion and random walks in S L d ( / p n ) : II, J. Eur. Math. Soc. 11, 1057–1103 (2009) Zbl1193.20060MR2538500
  7. Brooks, R., On the angles between certain arithmetically defined subspaces of n , Annales Inst. Fourier 37 (1987), 175–185. Zbl0611.15003MR894565
  8. Burger, M., Estimations de petites valeurs propres du laplacien d’un revêtement de variétés riemanniennes compactes, C.R. Acad. Sc. Paris 302 (1986), 191–194. Zbl0585.53035MR832070
  9. Cadoret, A., Tamagawa, A., Uniform boundedness of p-primary torsion of abelian schemes, Invent. Math., 188 (2012), 83–125. Zbl1294.14011MR2897693
  10. Çiperiani, M., Stix, J., Weil-Châtelet divisible elements in Tate-Shafarevich groups, arXiv:1106.4255. Zbl1327.11040
  11. Diaconis, P., Saloff-Coste, L., Comparison Techniques for Random Walk on Finite Groups, Ann. Probab. 21, no. 4 (1993), 2131–2156. Zbl0790.60011MR1245303
  12. Dinai, O., Poly-log diameter bounds for some families of finite groups, Proc. Amer. Math. Soc. 134 (2006), 3137–3142. Zbl1121.05058MR2231895
  13. Dinai, O.Diameters of Chevalley groups over local rings, arXiv:1201.4686. Zbl1263.20050MR3000421
  14. Ellenberg, J., Hall, C., Kowalski, E., Expander graphs, gonality and variation of Galois representations, Duke Math. J. 161, no. 4 (2012), 1233–1275. Zbl1262.14021MR2922374
  15. Faltings, G., Endlichkeitssätze für abelsche Variatäten über Zahlkörpern, Invent. math. 73 (1983), 349–366. Zbl0588.14026MR718935
  16. Faltings, G., Diophantine approximation on abelian varieties, Annals of Math. 133 (1991), 549–576. Zbl0734.14007MR1109353
  17. Frey, G., Curves with infinitely many points of fixed degree, Israel J. Math. 85 (1994), no. 1-3, 79–83. Zbl0808.14022MR1264340
  18. Fried, M. D., Introduction to modular towers: generalizing dihedral group-modular curve connections, in Recent developments in the inverse Galois problem (Seattle, WA, 1993), 111-171, Contemp. Math., 186, Amer. Math. Soc., Providence, RI, 1995. Zbl0957.11047MR1352270
  19. González-Jiménez, E., Xarles, X., On symmetric square values of quadratic polynomials, Acta Arithmetica 149, 145–159 (2011). Zbl1243.11046
  20. González-Jiménez, E., Xarles, X., Five squares in arithmetic progression over quadratic fields, to appear in Rev. Mat. Iberoamericana. Zbl06260624MR2590593
  21. Hindri, M., Silverman, J.H., Diophantine Geometry, An introduction. Graduate Texts in Mathematics 201. Springer-Verlag, New York, 2000. Zbl0948.11023MR1745599
  22. Lang, S., Tate, J., Principal homogeneous spaces over abelian varieties, Amer. J. Math. 80, (1958), 659–684. Zbl0097.36203MR106226
  23. Lazarsfeld, R., Lectures on Linear Series, With the assistance of Guillermo Fernández del Busto. IAS/Park City Math. Ser., 3, Complex algebraic geometry (Park City, UT, 1993), 161-219, Amer. Math. Soc., Providence, RI, 1997. Zbl0906.14002MR1442523
  24. Li, P. and Yau, S.T., A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces Invent. math. 69 (1982), 269–291. Zbl0503.53042MR674407
  25. Lubotzky, A., Discrete groups, expanding graphs and invariant measures, Progress in Math. 125, Birkaüser 1994. Zbl0826.22012MR1308046
  26. Manin, Y., A uniform bound for p-torsion in elliptic curves, Izv. Akad. Nauk. CCCP 33, (1969), 459–465. Zbl0191.19601
  27. Merel, L., Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437–449. Zbl0936.11037MR1369424
  28. Mohar, B., Eigenvalues, diameter, and mean distance in graphs, Graphs Combin. 7 (1991) 53–64. Zbl0771.05063MR1105467
  29. Poonen, B.Gonality of modular curves in characteristic p, Math. Res. Lett. 14 (2007), no. 4, 691–701. Zbl1138.14016MR2335995
  30. Silverman, J.H., The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics 106, Springer-Verlag, 1986. Zbl0585.14026MR817210
  31. Silverman, J.H., The Arithmetic of Dynamical Systems, Graduate Texts in Mathematics 241, Springer-Verlag, 2007. Zbl1130.37001MR2316407
  32. Xarles, X.Squares in arithmetic progression over number fields, J. Number Theory 132 (2012) 379–389. Zbl1280.11037MR2875345
  33. Zograf, P.Small eigenvalues of automorphic Laplacians in spaces of cusp forms, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 134 (1984), 157-168; translation in Journal of Math. Sciences 36, Number 1, 106–114. Zbl0536.10018MR741858

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.