Random Galois extensions of Hilbertian fields
Lior Bary-Soroker[1]; Arno Fehm[2]
- [1] School of Mathematical Sciences Tel Aviv University Ramat Aviv Tel Aviv 69978 Israel
- [2] Universität Konstanz Fachbereich Mathematik und Statistik Fach D 203 78457 Konstanz Germany
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 1, page 31-42
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBary-Soroker, Lior, and Fehm, Arno. "Random Galois extensions of Hilbertian fields." Journal de Théorie des Nombres de Bordeaux 25.1 (2013): 31-42. <http://eudml.org/doc/275812>.
@article{Bary2013,
abstract = {Let $L$ be a Galois extension of a countable Hilbertian field $K$. Although $L$ need not be Hilbertian, we prove that an abundance of large Galois subextensions of $L/K$ are.},
affiliation = {School of Mathematical Sciences Tel Aviv University Ramat Aviv Tel Aviv 69978 Israel; Universität Konstanz Fachbereich Mathematik und Statistik Fach D 203 78457 Konstanz Germany},
author = {Bary-Soroker, Lior, Fehm, Arno},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {4},
number = {1},
pages = {31-42},
publisher = {Société Arithmétique de Bordeaux},
title = {Random Galois extensions of Hilbertian fields},
url = {http://eudml.org/doc/275812},
volume = {25},
year = {2013},
}
TY - JOUR
AU - Bary-Soroker, Lior
AU - Fehm, Arno
TI - Random Galois extensions of Hilbertian fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/4//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 1
SP - 31
EP - 42
AB - Let $L$ be a Galois extension of a countable Hilbertian field $K$. Although $L$ need not be Hilbertian, we prove that an abundance of large Galois subextensions of $L/K$ are.
LA - eng
UR - http://eudml.org/doc/275812
ER -
References
top- Lior Bary-Soroker, On the characterization of Hilbertian fields. International Mathematics Research Notices, 2008. Zbl1217.12003MR2439555
- Lior Bary-Soroker, On pseudo algebraically closed extensions of fields. Journal of Algebra 322(6) (2009), 2082–2105. Zbl1213.12006MR2542832
- Lior Bary-Soroker and Arno Fehm, On fields of totally -adic numbers. http://arxiv.org/abs/1202.6200, 2012. Zbl06424158
- M. Fried and M. Jarden, Field Arithmetic. Ergebnisse der Mathematik III 11. Springer, 2008. 3rd edition, revised by M. Jarden. Zbl1145.12001MR2445111
- Dan Haran, Hilbertian fields under separable algebraic extensions. Invent. Math. 137(1) (1999), 113–126. Zbl0933.12003MR1702139
- Dan Haran, Moshe Jarden, and Florian Pop, The absolute Galois group of subfields of the field of totally -adic numbers. Functiones et Approximatio, Commentarii Mathematici, 2012. Zbl1318.12001MR2931667
- Moshe Jarden, Large normal extension of Hilbertian fields. Mathematische Zeitschrift 224 (1997), 555–565. Zbl0873.12001MR1452049
- Thomas J. Jech, Set Theory. Springer, 2002. Zbl1007.03002MR1940513
- Serge Lang, Diophantine Geometry. Interscience Publishers, 1962. Zbl0115.38701MR142550
- Jean-Pierre Serre, Topics in Galois Theory. Jones and Bartlett Publishers, 1992. Zbl0746.12001MR1162313
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.