Bounding hyperbolic and spherical coefficients of Maass forms
Valentin Blomer[1]; Farrell Brumley[2]; Alex Kontorovich[3]; Nicolas Templier[4]
- [1] Mathematisches Institut, Bunsenstr. 3-5, 37073 Göttingen, Germany
- [2] Institut Galilée, Université Paris 13 99 avenue J.-B. Clément 93430 Villetaneuse, France
- [3] Department of Mathematics Yale University New Haven, CT 06511 USA
- [4] Department of Mathematics Fine Hall, Washington Road Princeton, NJ 08544 USA
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 3, page 559-578
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBlomer, Valentin, et al. "Bounding hyperbolic and spherical coefficients of Maass forms." Journal de Théorie des Nombres de Bordeaux 26.3 (2014): 559-578. <http://eudml.org/doc/275819>.
@article{Blomer2014,
abstract = {We develop a new method to bound the hyperbolic and spherical Fourier coefficients of Maass forms defined with respect to arbitrary uniform lattices.},
affiliation = {Mathematisches Institut, Bunsenstr. 3-5, 37073 Göttingen, Germany; Institut Galilée, Université Paris 13 99 avenue J.-B. Clément 93430 Villetaneuse, France; Department of Mathematics Yale University New Haven, CT 06511 USA; Department of Mathematics Fine Hall, Washington Road Princeton, NJ 08544 USA},
author = {Blomer, Valentin, Brumley, Farrell, Kontorovich, Alex, Templier, Nicolas},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Maass forms; Fourier coefficients; geodesics; periods; equidistribution; Sobolev norms; wave front lemma},
language = {eng},
month = {12},
number = {3},
pages = {559-578},
publisher = {Société Arithmétique de Bordeaux},
title = {Bounding hyperbolic and spherical coefficients of Maass forms},
url = {http://eudml.org/doc/275819},
volume = {26},
year = {2014},
}
TY - JOUR
AU - Blomer, Valentin
AU - Brumley, Farrell
AU - Kontorovich, Alex
AU - Templier, Nicolas
TI - Bounding hyperbolic and spherical coefficients of Maass forms
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/12//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 3
SP - 559
EP - 578
AB - We develop a new method to bound the hyperbolic and spherical Fourier coefficients of Maass forms defined with respect to arbitrary uniform lattices.
LA - eng
KW - Maass forms; Fourier coefficients; geodesics; periods; equidistribution; Sobolev norms; wave front lemma
UR - http://eudml.org/doc/275819
ER -
References
top- M. B. Bekka and M. Mayer, Ergodic theory and topological dynamics of group action on homogeneous spaces, London Mathematical Society Lecture Note Series, 269, Cambridge University Press, Cambridge, (2000), x+200 pp. Zbl0961.37001MR1781937
- J. Bernstein and A. Reznikov, Sobolev norms of automorphic functionals, IMRN (2002), 2155–2174. Zbl1022.11025MR1930758
- J. Bernstein and A. Reznikov, Subconvexity bounds for triple -functions and representation theory. Ann. of Math. (2) 172, (2010), no. 3, 1679–1718. Zbl1225.11068MR2726097
- D. Bump, Automorphic forms and representations. Cambridge Studies in Advanced Mathematics 55, Cambridge University Press (1996). Zbl0868.11022MR1431508
- W. Duke, Z. Rudnick, and P. Sarnak, Density of integer points on affine homogeneous varieties. Duke Math. J. 71, (1993), no. 1, 143–179. Zbl0798.11024MR1230289
- A. Eskin and C. McMullen, Mixing, counting, and equidistribution in Lie groups. Duke Math. J. 71, (1993), no. 1, 181–209. Zbl0798.11025MR1230290
- I. Gelfand, M. Graev, and I. Piatetski-Shapiro, Representation Theory and Automorphic Functions. W.B. Saunders Co., Philadelphia, (1969). Zbl0177.18003MR233772
- A. Good, Cusp forms and eigenfunctions of the Laplacian. Math. Ann., 255, (1981), 523–548. Zbl0439.30031MR618183
- H. Oh and N. Shah, Limits of translates of divergent geodesics and integral points on one-sheeted hyperboloids, Israel J. Math, to appear. Zbl1298.22009MR3219562
- A. Reznikov, Rankin-Selberg without unfolding and bounds for spherical Fourier coefficients of Maass forms. J. Amer. Math. Soc. 21, (2008), no. 2, 439–477. Zbl1188.11024MR2373356
- A. Reznikov, Geodesic restrictions for the Casimir operator. J. Funct. Anal. 261, (2011), no. 9, 2437–2460. Zbl1229.53048MR2826400
- P. Sarnak, Fourth moments of Grössencharakteren zeta functions. Comm. Pure Appl. Math. 38, (1985), no. 2, 167–178. Zbl0577.10026MR780071
- P. Sarnak, Integrals of products of eigenfunctions. Internat. Math. Res. Notices (1994), no. 6, 251–260. Zbl0833.11020MR1277052
- A. Venkatesh, Sparse equidistribution problems, period bounds and subconvexity. Ann. of Math. (2) 172, (2010), no. 2, 989–1094. Zbl1214.11051MR2680486
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.