Relational quantifiers

Krynicki Michał

  • 1995

Abstract

top
CONTENTS  Introduction.................................................................................5 1. Algebras of monotone quantifiers.............................................7  1.1. Family of monotone quantifiers............................................7  1.2. Lattice of monotone quantifiers............................................8  1.3. Other operations in M(κ)......................................................9 2. Algebras of relational quantifiers............................................11  2.1. Basic properties of the family of relational quantifiers........11  2.2. Relations and quantifiers...................................................13  2.3. Lattices of relational quantifiers.........................................15  2.4. Other operations in R(κ)....................................................17 3. Logics with relational quantifiers............................................18  3.1. Structures with relational quantifiers..................................18  3.2. Completeness theorem......................................................19  3.3. Some simple consequences...............................................20 4. Model theory of relational quantifiers.....................................21  4.1. Basic notions......................................................................21  4.2. Substructure relations and preservation therems..............23  4.3. The chain property.............................................................27  4.4. Product operations............................................................29 5. Classes of relations and their logics......................................33  5.1. Logics determined by classes of relations.........................33  5.2. Classes of relations vs. sets of sentences.........................36  5.3. The Galois connection.......................................................38  5.4. The lattice of closed classes..............................................40  5.5. Further properties..............................................................44  5.6. Some open questions........................................................45  References...............................................................................46 1991 Mathematics Subject Classification: Primary 03C80; Secondary 06A15, 06B99.

How to cite

top

Krynicki Michał. Relational quantifiers. 1995. <http://eudml.org/doc/275825>.

@book{KrynickiMichał1995,
abstract = { CONTENTS  Introduction.................................................................................5 1. Algebras of monotone quantifiers.............................................7  1.1. Family of monotone quantifiers............................................7  1.2. Lattice of monotone quantifiers............................................8  1.3. Other operations in M(κ)......................................................9 2. Algebras of relational quantifiers............................................11  2.1. Basic properties of the family of relational quantifiers........11  2.2. Relations and quantifiers...................................................13  2.3. Lattices of relational quantifiers.........................................15  2.4. Other operations in R(κ)....................................................17 3. Logics with relational quantifiers............................................18  3.1. Structures with relational quantifiers..................................18  3.2. Completeness theorem......................................................19  3.3. Some simple consequences...............................................20 4. Model theory of relational quantifiers.....................................21  4.1. Basic notions......................................................................21  4.2. Substructure relations and preservation therems..............23  4.3. The chain property.............................................................27  4.4. Product operations............................................................29 5. Classes of relations and their logics......................................33  5.1. Logics determined by classes of relations.........................33  5.2. Classes of relations vs. sets of sentences.........................36  5.3. The Galois connection.......................................................38  5.4. The lattice of closed classes..............................................40  5.5. Further properties..............................................................44  5.6. Some open questions........................................................45  References...............................................................................46 1991 Mathematics Subject Classification: Primary 03C80; Secondary 06A15, 06B99.},
author = {Krynicki Michał},
language = {eng},
title = {Relational quantifiers},
url = {http://eudml.org/doc/275825},
year = {1995},
}

TY - BOOK
AU - Krynicki Michał
TI - Relational quantifiers
PY - 1995
AB - CONTENTS  Introduction.................................................................................5 1. Algebras of monotone quantifiers.............................................7  1.1. Family of monotone quantifiers............................................7  1.2. Lattice of monotone quantifiers............................................8  1.3. Other operations in M(κ)......................................................9 2. Algebras of relational quantifiers............................................11  2.1. Basic properties of the family of relational quantifiers........11  2.2. Relations and quantifiers...................................................13  2.3. Lattices of relational quantifiers.........................................15  2.4. Other operations in R(κ)....................................................17 3. Logics with relational quantifiers............................................18  3.1. Structures with relational quantifiers..................................18  3.2. Completeness theorem......................................................19  3.3. Some simple consequences...............................................20 4. Model theory of relational quantifiers.....................................21  4.1. Basic notions......................................................................21  4.2. Substructure relations and preservation therems..............23  4.3. The chain property.............................................................27  4.4. Product operations............................................................29 5. Classes of relations and their logics......................................33  5.1. Logics determined by classes of relations.........................33  5.2. Classes of relations vs. sets of sentences.........................36  5.3. The Galois connection.......................................................38  5.4. The lattice of closed classes..............................................40  5.5. Further properties..............................................................44  5.6. Some open questions........................................................45  References...............................................................................46 1991 Mathematics Subject Classification: Primary 03C80; Secondary 06A15, 06B99.
LA - eng
UR - http://eudml.org/doc/275825
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.