A detailed analysis for the fundamental solution of fractional vibration equation
Open Mathematics (2015)
- Volume: 13, Issue: 1
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B˘aleanu D., Diethelm K., Scalas E., Trujillo J.J., Fractional calculus models and numerical methods – Series on complexity, nonlinearity and chaos, World Scientific, Boston, 2012
- [2] Gorenflo R., Mainardi F., Fractional calculus: integral and differential equations of fractional order. In: Carpinteri A., Mainardi F. (Eds.), Fractals and fractional calculus in continuum mechanics, Springer-Verlag, Wien/New York, 1997, pp. 223-276
- [3] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006 Zbl1092.45003
- [4] Kiryakova V., Generalized fractional calculus and applications, Pitman Res. Notes in Math. Ser., Vol. 301, Longman Scientific & Technical and John Wiley & Sons, Inc., Harlow and New York, 1994
- [5] Klafter J., Lim S.C., Metzler R., Fractional dynamics: recent advances, World Scientific, Singapore, 2011 Zbl1238.93005
- [6] Mainardi F., Fractional calculus and waves in linear viscoelasticity, Imperial College, London & World Scientific, Singapore, 2010 Zbl1210.26004
- [7] Miller K.S., Ross B., An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993 Zbl0789.26002
- [8] Oldham K.B., Spanier J., The fractional calculus, Academic Press, New York, 1974 Zbl0292.26011
- [9] Podlubny I., Fractional differential equations, Academic Press, San Diego, 1999
- [10] Rossikhin Y.A., Shitikova M.V., Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanisms of solids, Appl. Mech. Rev., 1997, 50, 15-67 [Crossref]
- [11] Koeller R.C., Applications of fractional calculus to the theory of viscoelasticity, J. Appl. Mech., 1984, 51, 299-307 [Crossref] Zbl0544.73052
- [12] Xu M.Y., Tan W.C., Representation of the constitutive equation of viscoelastic materials by the generalized fractional element networks and its generalized solutions, Sci. China Ser. G, 2003, 46, 145-157 [Crossref]
- [13] Chen W., An intuitive study of fractional derivative modeling and fractional quantum in soft matter, J. Vib. Control, 2008, 14, 1651-1657 [WoS][Crossref] Zbl1229.74009
- [14] Scott-Blair G.W., Analytical and integrative aspects of the stress-strain-time problem, J. Sci. Instr., 1944, 21, 80-84
- [15] Scott-Blair G.W., A survey of general and applied rheology, Pitman, London, 1949 Zbl0033.23202
- [16] Bland D.R., The theory of linear viscoelasticity, Pergamon, Oxford, 1960 Zbl0108.38501
- [17] Bagley R.L., Torvik P.J., A generalized derivative model for an elastomer damper, Shock. Vib. Bull., 1979, 49, 135-143
- [18] Beyer H., Kempfle S., Definition of physically consistent damping laws with fractional derivatives, ZAMM Z. Angew. Math. Mech., 1995, 75, 623-635 Zbl0865.70014
- [19] Achar B.N.N., Hanneken J.W., Clarke T., Response characteristics of a fractional oscillator, Physica A, 2002, 309, 275-288 Zbl0995.70017
- [20] Li M., Lim S.C., Chen S., Exact solution of impulse response to a class of fractional oscillators and its stability, Math. Probl. Eng., 2011, 2011, ID 657839 [WoS] Zbl1202.34018
- [21] Lim S.C., Li M., Teo L.P., Locally self-similar fractional oscillator processess, Fluct. Noise Lett., 2007, 7, L169-L179 [Crossref][WoS]
- [22] Shen Y.J., Yang S.P., Xing H.J., Dynamical analysis of linear single degree-of-freedom oscillator with fractional-order derivative, Acta Phys. Sinica, 2012, 61, 110505-1-6
- [23] Shen Y., Yang S., Xing H., Gao G., Primary resonance of Duffing oscillator with fractional-order derivative, Commun. Nonlinear Sci. Numer. Simul., 2012, 17, 3092-3100 [Crossref] Zbl1252.35274
- [24] Naber M., Linear fractionally damped oscillator, Int. J. Difference Equ., 2010, 2010, ID197020 Zbl1207.34010
- [25] Wang Z.H., Du M.L., Asymptotical behavior of the solution of a SDOF linear fractionally damped vibration system, Shock Vib., 2011, 18, 257-268 [WoS][Crossref]
- [26] Li M., Lim S.C., Cattani C., Scalia M., Characteristic roots of a class of fractional oscillators, Adv. High Energy Phys., 2013, 2013, ID 853925 [WoS] Zbl1328.34007
- [27] Naranjani Y., Sardahi Y., Chen Y.Q., Sun J.Q., Multi-objective optimization of distributed-order fractional damping, Commun. Nonlinear Sci. Numer. Simul., 2015, 24, 159-168 [Crossref][WoS]
- [28] Li M., Li Y.C., Leng J.X., Power-type functions of prediction error of sea level time series, Entropy, 2015, 17, 4809-4837
- [29] Li C.P., Deng W.H., Xu D., Chaos synchronization of the Chua system with a fractional order, Physica A, 2006, 360, 171-185
- [30] Zhang W., Liao S.K., Shimizu N., Dynamic behaviors of nonlinear fractional-order differential oscillator, J. Mech. Sci. Tech., 2009, 23, 1058-1064 [Crossref]
- [31] Wang Z.H., Hu H.Y., Stability of a linear oscillator with damping force of the fractional-order derivative, Sci. China Ser. G, 2010, 53, 345-352 [WoS][Crossref]
- [32] Li C., Ma Y., Fractional dynamical system and its linearization theorem, Nonlinear Dynam., 2013, 71, 621-633 [WoS] Zbl1268.34019
- [33] Yang X.J., Baleanu D., Srivastava H.M., Local fractional similarity solution for the diffusion equation defined on Cantor sets, Appl. Math. Lett., 2015, 47, 54-60 [Crossref] Zbl06477315
- [34] Yang X.J., Srivastava H.M., An asymptotic perturbation solution for a linear oscillator of free damped vibrations in fractal medium described by local fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 2015, 29, 499-504 [Crossref][WoS]
- [35] Yang X.J., Srivastava H.M., Cattani C., Local fractional homotopy perturbation method for solving fractal partial differential equations arising in mathematical physics, Rom. Rep. Phys., 2015, 67, 752-761
- [36] Yang X.J., Baleanu D., Baleanu M.C., Observing diffusion problems defined on cantor sets in different coordinate systems, Therm. Sci., 2015, 19(S1), 151-156 [WoS][Crossref]
- [37] Yan S.P., Local fractional Laplace series expansion method for diffusion equation arising in fractal heat transfer, Therm. Sci., 2015, 19, S131-S135 [WoS][Crossref]
- [38] Duan J.S., Time- and space-fractional partial differential equations, J. Math. Phys., 2005, 46, 13504-13511 [Crossref]
- [39] Duan J.S., Fu S.Z., Wang Z., Fractional diffusion-wave equations on finite interval by Laplace transform, Integral Transforms Spec. Funct., 2014, 25, 220-229 [WoS] Zbl1297.35270
- [40] Davies B., Integral transforms and their applications, 3rd ed., Springer-Verlag, New York, 2001 Zbl0996.44001
- [41] Duan J.S., Wang Z., Fu S.Z., The zeros of the solutions of the fractional osciliation equation, Fract. Calc. Appl. Anal., 2014, 17, 10-12 [Crossref]
- [42] Duan J.S., Wang Z., Liu Y.L., Qiu X., Eigenvalue problems for fractional ordinary differential equations, Chaos Solitons Fractals, 2013, 46, 46-53 [Crossref][WoS] Zbl1258.34041