On the generalized Avez method

Antoni Leon Dawidowicz

Annales Polonici Mathematici (1992)

  • Volume: 57, Issue: 3, page 209-218
  • ISSN: 0066-2216

Abstract

top
A generalization of the Avez method of construction of an invariant measure is presented.

How to cite

top

Antoni Leon Dawidowicz. "On the generalized Avez method." Annales Polonici Mathematici 57.3 (1992): 209-218. <http://eudml.org/doc/275863>.

@article{AntoniLeonDawidowicz1992,
abstract = {A generalization of the Avez method of construction of an invariant measure is presented.},
author = {Antoni Leon Dawidowicz},
journal = {Annales Polonici Mathematici},
keywords = {Avez measure; invariant measure; Avez method; Banach limits; measurable transformations},
language = {eng},
number = {3},
pages = {209-218},
title = {On the generalized Avez method},
url = {http://eudml.org/doc/275863},
volume = {57},
year = {1992},
}

TY - JOUR
AU - Antoni Leon Dawidowicz
TI - On the generalized Avez method
JO - Annales Polonici Mathematici
PY - 1992
VL - 57
IS - 3
SP - 209
EP - 218
AB - A generalization of the Avez method of construction of an invariant measure is presented.
LA - eng
KW - Avez measure; invariant measure; Avez method; Banach limits; measurable transformations
UR - http://eudml.org/doc/275863
ER -

References

top
  1. [1] A. Avez, Propriétés ergodiques des endomorphismes dilatants des variétes compacts, C. R. Acad. Sci. Paris Sér. A 266 (1968), 610-612. Zbl0186.56704
  2. [2] S. Banach, Théorie des opérations linéaires, Warszawa 1932. Zbl0005.20901
  3. [3] A. L. Dawidowicz, On the existence of an invariant measure for the dynamical system generated by partial differential equation, Ann. Polon. Math. 41 (1983), 129-137. Zbl0572.35015
  4. [4] A. L. Dawidowicz, Invariant measures supported on compact sets, Univ. Iagell. Acta Math. 25 (1985), 277-283. Zbl0616.28011
  5. [5] A. L. Dawidowicz, On the positivity of an invariant measure on open non-empty sets, Ann. Polon. Math. 50 (1989), 185-190. Zbl0714.58033
  6. [6] A. L. Dawidowicz, On the lifting of invariant measure, Ann. Polon. Math. 51 (1990), 137-139. Zbl0727.28014
  7. [7] U. Krengel, Ergodic Theorems, W. de Gruyter, Berlin 1985. 
  8. [8] A. Lasota, Invariant measure and a linear model of turbulence, Rend. Sem. Mat. Univ. Padova 61 (1979), 39-48. Zbl0459.28025
  9. [9] A. Lasota and G. Pianigiani, Invariant measures on topological spaces, Boll. Un. Mat. Ital. (5) 15-B (1977), 592-603. 
  10. [10] F. Schweiger, Some remarks on ergodicity and invariant measures, Michigan Math. J. 22 (1975), 181-187. Zbl0302.28013
  11. [11] F. Schweiger, tan x is ergodic, Proc. Amer. Math. Soc. 71 (1978), 54-56. Zbl0361.28011

NotesEmbed ?

top

You must be logged in to post comments.