On the generalized Avez method

Antoni Leon Dawidowicz

Annales Polonici Mathematici (1992)

  • Volume: 57, Issue: 3, page 209-218
  • ISSN: 0066-2216

Abstract

top
A generalization of the Avez method of construction of an invariant measure is presented.

How to cite

top

Antoni Leon Dawidowicz. "On the generalized Avez method." Annales Polonici Mathematici 57.3 (1992): 209-218. <http://eudml.org/doc/275863>.

@article{AntoniLeonDawidowicz1992,
abstract = {A generalization of the Avez method of construction of an invariant measure is presented.},
author = {Antoni Leon Dawidowicz},
journal = {Annales Polonici Mathematici},
keywords = {Avez measure; invariant measure; Avez method; Banach limits; measurable transformations},
language = {eng},
number = {3},
pages = {209-218},
title = {On the generalized Avez method},
url = {http://eudml.org/doc/275863},
volume = {57},
year = {1992},
}

TY - JOUR
AU - Antoni Leon Dawidowicz
TI - On the generalized Avez method
JO - Annales Polonici Mathematici
PY - 1992
VL - 57
IS - 3
SP - 209
EP - 218
AB - A generalization of the Avez method of construction of an invariant measure is presented.
LA - eng
KW - Avez measure; invariant measure; Avez method; Banach limits; measurable transformations
UR - http://eudml.org/doc/275863
ER -

References

top
  1. [1] A. Avez, Propriétés ergodiques des endomorphismes dilatants des variétes compacts, C. R. Acad. Sci. Paris Sér. A 266 (1968), 610-612. Zbl0186.56704
  2. [2] S. Banach, Théorie des opérations linéaires, Warszawa 1932. Zbl0005.20901
  3. [3] A. L. Dawidowicz, On the existence of an invariant measure for the dynamical system generated by partial differential equation, Ann. Polon. Math. 41 (1983), 129-137. Zbl0572.35015
  4. [4] A. L. Dawidowicz, Invariant measures supported on compact sets, Univ. Iagell. Acta Math. 25 (1985), 277-283. Zbl0616.28011
  5. [5] A. L. Dawidowicz, On the positivity of an invariant measure on open non-empty sets, Ann. Polon. Math. 50 (1989), 185-190. Zbl0714.58033
  6. [6] A. L. Dawidowicz, On the lifting of invariant measure, Ann. Polon. Math. 51 (1990), 137-139. Zbl0727.28014
  7. [7] U. Krengel, Ergodic Theorems, W. de Gruyter, Berlin 1985. 
  8. [8] A. Lasota, Invariant measure and a linear model of turbulence, Rend. Sem. Mat. Univ. Padova 61 (1979), 39-48. Zbl0459.28025
  9. [9] A. Lasota and G. Pianigiani, Invariant measures on topological spaces, Boll. Un. Mat. Ital. (5) 15-B (1977), 592-603. 
  10. [10] F. Schweiger, Some remarks on ergodicity and invariant measures, Michigan Math. J. 22 (1975), 181-187. Zbl0302.28013
  11. [11] F. Schweiger, tan x is ergodic, Proc. Amer. Math. Soc. 71 (1978), 54-56. Zbl0361.28011

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.