On Unique Minimum Dominating Sets in Some Cartesian Product Graphs
Discussiones Mathematicae Graph Theory (2015)
- Volume: 35, Issue: 4, page 615-628
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topJason T. Hedetniemi. "On Unique Minimum Dominating Sets in Some Cartesian Product Graphs." Discussiones Mathematicae Graph Theory 35.4 (2015): 615-628. <http://eudml.org/doc/275865>.
@article{JasonT2015,
abstract = {Unique minimum vertex dominating sets in the Cartesian product of a graph with a complete graph are considered. We first give properties of such sets when they exist. We then show that when the first factor of the product is a tree, consideration of the tree alone is sufficient to determine if the product has a unique minimum dominating set.},
author = {Jason T. Hedetniemi},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {vertex domination; graph products; trees},
language = {eng},
number = {4},
pages = {615-628},
title = {On Unique Minimum Dominating Sets in Some Cartesian Product Graphs},
url = {http://eudml.org/doc/275865},
volume = {35},
year = {2015},
}
TY - JOUR
AU - Jason T. Hedetniemi
TI - On Unique Minimum Dominating Sets in Some Cartesian Product Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2015
VL - 35
IS - 4
SP - 615
EP - 628
AB - Unique minimum vertex dominating sets in the Cartesian product of a graph with a complete graph are considered. We first give properties of such sets when they exist. We then show that when the first factor of the product is a tree, consideration of the tree alone is sufficient to determine if the product has a unique minimum dominating set.
LA - eng
KW - vertex domination; graph products; trees
UR - http://eudml.org/doc/275865
ER -
References
top- [1] M. Chellali and T. Haynes, Trees with unique minimum paired-dominating sets, Ars Combin. 73 (2004) 3-12. Zbl1082.05023
- [2] E. Cockayne, S. Goodman and S. Hedetniemi, A linear algorithm for the domination number of a tree, Inform. Process. Lett. 4 (1975) 41-44. doi:10.1016/0020-0190(75)90011-3[Crossref] Zbl0311.68024
- [3] M. Fischermann, Block graphs with unique minimum dominating sets, Discrete Math. 240 (2001) 247-251. doi:10.1016/S0012-365X(01)00196-0[Crossref] Zbl0982.05073
- [4] M. Fischermann, Unique total domination graphs, Ars Combin. 73 (2004) 289-297. Zbl1073.05048
- [5] M. Fischermann, D. Rautenbach and L. Volkmann, Maximum graphs with a unique minimum dominating set , Discrete Math. 260 (2003) 197-203. doi:10.1016/S0012-365X(02)00670-2[Crossref] Zbl1011.05042
- [6] M. Fischermann, D. Rautenbach and L. Volkmann, A note on the complexity of graph parameters and the uniqueness of their realizations, J. Combin. Math. Com- bin. Comput. 47 (2003) 183-188. Zbl1038.05043
- [7] M. Fischermann and L. Volkmann, Unique minimum domination in trees, Australas. J. Combin. 25 (2002) 117-124. Zbl1001.05088
- [8] M. Fischermann and L. Volkmann, Cactus graphs with unique minimum dominating sets, Util. Math. 63 (2003) 229-238. Zbl1035.05062
- [9] M. Fischermann and L. Volkmann, Unique independence, upper domination and upper irredundance in graphs, J. Combin. Math. Combin. Comput. 47 (2003) 237-249. Zbl1038.05044
- [10] M. Fischermann, L. Volkmann and I. Zverovich, Unique irredundance, domination, and independent domination in graphs, Discrete Math. 305 (2005) 190-200. doi:10.1016/j.disc.2005.08.005[Crossref] Zbl1080.05066
- [11] M. Fraboni and N. Shank, Maximum graphs with unique minimum dominating set of size two, Australas. J. Combin. 46 (2010) 91-99. Zbl1196.05061
- [12] G. Gunther, B. Hartnell, L. Markus and D. Rall, Graphs with unique minimum dom- inating sets, in: Proc. 25th S.E. Int. Conf. Combin., Graph Theory, and Computing, Congr. Numer. 101 (1994) 55-63. Zbl0836.05045
- [13] R. Hammack, W. Imrich and S. Klavˇzar, Handbook of Product Graphs (CRC Press, 2011). Zbl1283.05001
- [14] T. Haynes and M. Henning, Trees with unique minimum total dominating sets, Discuss. Math. Graph Theory 22 (2002) 233-246. doi:10.7151/dmgt.1172[Crossref] Zbl1031.05095
- [15] M. Henning, Defending the Roman Empire from multiple attacks, Discrete Math. 271 (2003) 101-115. doi:10.1016/S0012-365X(03)00040-2[Crossref] Zbl1022.05055
- [16] M. Henning and S. Hedetniemi, Defending the Roman Empire-a new strategy, Discrete Math. 266 (2003) 239-251. doi:10.1016/S0012-365X(02)00811-7[Crossref] Zbl1024.05068
- [17] J. Topp, Graphs with unique minimum edge dominating sets and graphs with unique maximum independent sets of vertices, Discrete Math. 121 (1993) 199-210. doi:10.1016/0012-365X(93)90553-6 [Crossref] Zbl0784.05038
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.