Bivariate copulas, norms and non-exchangeability
Dependence Modeling (2015)
- Volume: 3, Issue: 1, page 196-202, electronic only
- ISSN: 2300-2298
Access Full Article
topAbstract
topHow to cite
topPier Luigi Papini. "Bivariate copulas, norms and non-exchangeability." Dependence Modeling 3.1 (2015): 196-202, electronic only. <http://eudml.org/doc/275866>.
@article{PierLuigiPapini2015,
abstract = {The present paper is related to the study of asymmetry for copulas by introducing functionals based on different norms for continuous variables. In particular, we discuss some facts concerning asymmetry and we point out some flaws occurring in the recent literature dealing with this matter.},
author = {Pier Luigi Papini},
journal = {Dependence Modeling},
keywords = {Copulas; Asymmetry; Measure of nonexchangeability; copulas; asymmetry; measure of nonexchangeability},
language = {eng},
number = {1},
pages = {196-202, electronic only},
title = {Bivariate copulas, norms and non-exchangeability},
url = {http://eudml.org/doc/275866},
volume = {3},
year = {2015},
}
TY - JOUR
AU - Pier Luigi Papini
TI - Bivariate copulas, norms and non-exchangeability
JO - Dependence Modeling
PY - 2015
VL - 3
IS - 1
SP - 196
EP - 202, electronic only
AB - The present paper is related to the study of asymmetry for copulas by introducing functionals based on different norms for continuous variables. In particular, we discuss some facts concerning asymmetry and we point out some flaws occurring in the recent literature dealing with this matter.
LA - eng
KW - Copulas; Asymmetry; Measure of nonexchangeability; copulas; asymmetry; measure of nonexchangeability
UR - http://eudml.org/doc/275866
ER -
References
top- [1] E. Alvoni and P.L. Papini (2007). Quasi-concave copulas, asymmetry and transformations. Comment. Math. Univ. Carolin. 48(2), 311-319. Zbl1195.62074
- [2] E. Alvoni, F. Durante, P. L. Papini and C. Sempi (2007). Different types of convexity and concavity for copulas. In M. Stepnicka, V. Nowak and U. Bodenhofer (ed.s), Proc. 5th EUSFLAT Conf. Volume 1, Univ. Ostravensis, 185-189.
- [3] G. Beliakov, B.De Baets, H. De Meyer, R.B. Nelsen and M. Úbeda-Flores (2014). Best possible bounds on the set of copulas with given degree of non-exchangeability. J. Math. Anal. Appl. 417(1), 451-468. [WoS] Zbl1308.62108
- [4] F. W. Darsow and E. T. Olsen (1995). Norms for copulas. Internat. J. Math. Math. Sci. 18(3), 417-436. [Crossref] Zbl0827.46011
- [5] F. Durante, E. P. Klement, C. Sempi and M. Úbeda-Flores (2010). Measures of non-exchangeability for bivariate random vectors. Statist. Papers 51(3), 687-699. [Crossref] Zbl1247.60047
- [6] F. Durante and P.L. Papini (2010). Non-exchangeability of negatively dependent random variables. Metrika 71(2), 139-149. [Crossref][WoS] Zbl1182.62119
- [7] F. Durante and C. Sempi (2015). Principles of Copula Theory. Chapman & Hall/CRC, Boca Raton FL. Zbl06445037
- [8] S. Fuchs and K.D. Schmidt (2014). Bivariate copulas: transformations, asymmetry and measures of concordance. Kybernetika 50(1), 109-125. Zbl06296994
- [9] C. Genest and J.G. Nešlehová (2013). Assessing and Modeling Asymmetry in Bivariate Continuous Data. In P. Jaworski, F. Durante and W.K. Härdle (ed.s), Copulae in Mathematical and Quantitative Finance, Springer Berlin. Zbl1273.62112
- [10] E. P. Klement and R. Mesiar (2006). How non-symmetric can a copula be? Comment. Math. Univ. Carolin. 47(1), 141-148. Zbl1150.62027
- [11] R. B. Nelsen (2006). An introduction to Copulas. Second Edition. Springer, New York. Zbl1152.62030
- [12] R.B. Nelsen (2007). Extremes of nonexchangeability. Statist. Papers 48(2), 329-336. [Crossref] Zbl1110.62071
- [13] K. F. Siburg and P. A. Stoimenov (2008). A scalar product for copulas. J. Math. Anal. Appl. 344(1), 429-439. Zbl1151.46023
- [14] K. F. Siburg and P.A. Stoimenov (2011). Symmetry of functions and exchangeability of random variables. Statist. Papers 52(1), 1-15. [Crossref] Zbl1247.60021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.