# Restricted and quasi-toral restricted Lie-Rinehart algebras

Open Mathematics (2015)

- Volume: 13, Issue: 1, page 400-413
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topBing Sun, and Liangyun Chen. "Restricted and quasi-toral restricted Lie-Rinehart algebras." Open Mathematics 13.1 (2015): 400-413. <http://eudml.org/doc/275895>.

@article{BingSun2015,

abstract = {In this paper, we introduce the definition of restrictable Lie-Rinehart algebras, the concept of restrictability is by far more tractable than that of a restricted Lie-Rinehart algebra. Moreover, we obtain some properties of p-mappings and restrictable Lie-Rinehart algebras. Finally, we give some sufficient conditions for the commutativity of quasi-toral restricted Lie-Rinehart algebras and study how a quasi-toral restricted Lie-Rinehart algebra with zero center and of minimal dimension should be.},

author = {Bing Sun, Liangyun Chen},

journal = {Open Mathematics},

keywords = {Restricted Lie-Rinehart algebras; Restrictable Lie-Rinehart algebras; Quasi-toral restricted Lie-Rinehart algebras; multiplicative 3-ary Hom-Nambu-Lie algebras; Rota-Baxter algebras; Hom-preLie algebras},

language = {eng},

number = {1},

pages = {400-413},

title = {Restricted and quasi-toral restricted Lie-Rinehart algebras},

url = {http://eudml.org/doc/275895},

volume = {13},

year = {2015},

}

TY - JOUR

AU - Bing Sun

AU - Liangyun Chen

TI - Restricted and quasi-toral restricted Lie-Rinehart algebras

JO - Open Mathematics

PY - 2015

VL - 13

IS - 1

SP - 400

EP - 413

AB - In this paper, we introduce the definition of restrictable Lie-Rinehart algebras, the concept of restrictability is by far more tractable than that of a restricted Lie-Rinehart algebra. Moreover, we obtain some properties of p-mappings and restrictable Lie-Rinehart algebras. Finally, we give some sufficient conditions for the commutativity of quasi-toral restricted Lie-Rinehart algebras and study how a quasi-toral restricted Lie-Rinehart algebra with zero center and of minimal dimension should be.

LA - eng

KW - Restricted Lie-Rinehart algebras; Restrictable Lie-Rinehart algebras; Quasi-toral restricted Lie-Rinehart algebras; multiplicative 3-ary Hom-Nambu-Lie algebras; Rota-Baxter algebras; Hom-preLie algebras

UR - http://eudml.org/doc/275895

ER -

## References

top- [1] J. Casas, Obstructions to Lie-Rinehart Algebra Extensions. Algebra Colloq. 18 (2011), 83-104. [WoS] Zbl1237.17020
- [2] J. Casas, M. Ladra, T. Pirashvili, Crossed modules for Lie-Rinehart algebras. J. Algebra 274 (2004), 192-201. [WoS] Zbl1046.17006
- [3] L. Chen, D. Meng, B. Ren, On quasi-toral restricted Lie algebras. Chinese Ann. Math. Ser B 26 (2005), 207-218. [Crossref] Zbl1105.17008
- [4] B. Chew, On the commutativity of restricted Lie algebras. Proc. Amer. Math. Soc. 16 (1965), 547.
- [5] Z. Chen, Z. Liu, D. Zhong, Lie-Rinehart bialgebras for crossed products. J. Pure Appl. Algebra 215 (2011), 1270-1283. [WoS] Zbl1217.17014
- [6] I. Dokas, Cohomology of restricted Lie-Rinehart algebras and the Brauer group. Adv. Math. 231 (2012), 2573-2592. [WoS] Zbl1335.17009
- [7] I. Dokas, J. Loday, On restricted Leibniz algebras. Comm. Algebra 34 (2006), 4467-4478. Zbl1162.17001
- [8] R. Farnsteiner, Conditions for the commutativity of restricted Lie algebras. Heidelberg and New York, 1967. Zbl0565.17005
- [9] R. Farnsteiner, Note on Frobenius extensions and restricted Lie superalgebras. J. Pure Appl. Algebra 108 (1996), 241-256. Zbl0854.17022
- [10] R. Farnsteiner, Restricted Lie algebras with semilinear p-mapping. Amer. Math. Soc. 91 (1984), 41-45. Zbl0511.17004
- [11] J. Herz, Pseudo-alg J ebras de Lie. C. R. Acad. Sci. paris 236 (1953), 1935-1937.
- [12] T. Hodge, Lie triple system, restricted Lie triple system and algebraic groups. J. Algebra 244 (2001), 533-580. Zbl0987.17011
- [13] J. Huebschmann, Poisson cohomology and quantization. J. Reine Angew. Math. 408 (1990), 57-113. Zbl0699.53037
- [14] N. Jacobson, Lie algebras. Dover., Publ. New York, 1979. Zbl0121.27504
- [15] R. Palais, The cohomology of Lie rings. Amer. Math. Soc., Providence, R. I., Proc. Symp. Pure Math. (1961), 130-137. [Crossref]
- [16] G. Rinehart, Differential forms on general commutative algebras. Trans. Amer. Math. Soc. 108 (1963), 195-222. Zbl0113.26204
- [17] H. Strade, R. Farnsteiner, Modular Lie algebras and their representations. New York: Marcel Dekker Inc. 300 (1988). Zbl0648.17003

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.