An analysis of the Rüschendorf transform - with a view towards Sklar’s Theorem

Frank Oertel

Dependence Modeling (2015)

  • Volume: 3, Issue: 1, page 113-125, electronic only
  • ISSN: 2300-2298

Abstract

top
We revisit Sklar’s Theorem and give another proof, primarily based on the use of right quantile functions. To this end we slightly generalise the distributional transform approach of Rüschendorf and facilitate some new results including a rigorous characterisation of an almost surely existing “left-invertibility” of distribution functions.

How to cite

top

Frank Oertel. "An analysis of the Rüschendorf transform - with a view towards Sklar’s Theorem." Dependence Modeling 3.1 (2015): 113-125, electronic only. <http://eudml.org/doc/275903>.

@article{FrankOertel2015,
abstract = {We revisit Sklar’s Theorem and give another proof, primarily based on the use of right quantile functions. To this end we slightly generalise the distributional transform approach of Rüschendorf and facilitate some new results including a rigorous characterisation of an almost surely existing “left-invertibility” of distribution functions.},
author = {Frank Oertel},
journal = {Dependence Modeling},
keywords = {Copulas, distributional transform; generalised inverse functions; Sklar’s Theorem; copulas; distributional transform; Sklar's theorem},
language = {eng},
number = {1},
pages = {113-125, electronic only},
title = {An analysis of the Rüschendorf transform - with a view towards Sklar’s Theorem},
url = {http://eudml.org/doc/275903},
volume = {3},
year = {2015},
}

TY - JOUR
AU - Frank Oertel
TI - An analysis of the Rüschendorf transform - with a view towards Sklar’s Theorem
JO - Dependence Modeling
PY - 2015
VL - 3
IS - 1
SP - 113
EP - 125, electronic only
AB - We revisit Sklar’s Theorem and give another proof, primarily based on the use of right quantile functions. To this end we slightly generalise the distributional transform approach of Rüschendorf and facilitate some new results including a rigorous characterisation of an almost surely existing “left-invertibility” of distribution functions.
LA - eng
KW - Copulas, distributional transform; generalised inverse functions; Sklar’s Theorem; copulas; distributional transform; Sklar's theorem
UR - http://eudml.org/doc/275903
ER -

References

top
  1. [1] S. Ahmed, U. Çakmak and A. Shapiro. Coherent risk measures in inventory problems. European J. Oper. Res., 182 (1), 226-238 (2007). [WoS] Zbl1128.90002
  2. [2] R. B. Ash and C. A. Doléans-Dade. Probability and Measure Theory - 2nd Edition. Academic Press (2000). 
  3. [3] P. Billingsley. Probability and Measure - 3rd Edition. John Wiley & Sons (1995). Zbl0822.60002
  4. [4] F. Durante, J. Fernández-Sánchez and C. Sempi. A topological proof of Sklar’s theorem. Appl.Math. Lett. 26, 945-948 (2013). [WoS][Crossref] Zbl1314.62127
  5. [5] P. Embrechts and M. Hofert. A note on generalized inverses. Math. Methods Oper. Res., 77 (3), 423-432 (2013). Zbl1281.60014
  6. [6] H. Föllmer and A. Schied. Stochastic Finance: An Introduction in Discrete Time - 3rd Edition. De Gruyter Textbook (2011). Zbl1126.91028
  7. [7] M. Fréchet. Sur les tableaux de corrélation dont les marges sont donnés. Ann. Univ. Lyon, Science 4, 13-84 (1951). Zbl0045.22905
  8. [8] E. P. Klement, R. Mesiar and E. Pap. Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Set. Syst., 104(1), 3-13 (1999). Zbl0953.26008
  9. [9] C. Feng, J. Kowalski, X. M. Tu and H. Wang. A Note on Generalized Inverses of Distribution Function and Quantile Transformation. Applied Mathematics, Scientific Research Publishing, 3 (12A), 2098-2100 (2012). 
  10. [10] J. F. Mai and M. Scherer. Simulating Copulas. Imperial College Press, London (2012). Zbl1301.65001
  11. [11] D. S. Moore and M. C. Spruill. Unified large-sample theory of general Chi-squared statistics for tests of fit. Ann. Statist., 3, 599-616 (1975). Zbl0322.62047
  12. [12] L. Rüschendorf. On the distributional transform, Sklar’s Theorem, and the empirical copula process. J. Statist. Plann. Inference 139(11), 3921-3927 (2009). Zbl1171.60313
  13. [13] B. Schweizer and A. Sklar. Operations on distribution functions not derivable from operations on random variables. Studia Math. 52, 43-52 (1974). Zbl0292.60035
  14. [14] B. Schweizer and A. Sklar. Probabilistic metric spaces. North-Holland, New York (1983). Zbl0546.60010
  15. [15] A. Sklar. Fonctions de répartition à n dimensions et leursmarges. Publications de l’Institut Statistique de l’Université de Paris 8, 229-231 (1959). Zbl0100.14202

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.