Nonlinear state-space predictive control with on-line linearisation and state estimation
International Journal of Applied Mathematics and Computer Science (2015)
- Volume: 25, Issue: 4, page 833-847
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Arahal, M., Berenguel, M. and Camacho, E. (1998). Neural identification applied to predictive control of a solar plant, Control Engineering Practice 6(3): 333-344.
- Bismor, D. (2015). Extension of LMS stability condition over a wide set of signals, International Journal of Adaptive Control and Signal Processing 29(5): 653-670, DOI: 10.1002/acs.2500. Zbl1330.93236
- Camacho, E. and Bordons, C. (1999). Model Predictive Control, Springer, London.
- Colin, G., Chamaillard, Y., Bloch, G. and Corde, G. (2007). Neural control of fast nonlinear systems application to a turbocharged SI engine with VCT, IEEE Transactions on Neural Networks 18(4): 1101-1114.
- de Oliveira, N. and Biegler, L. (1995). An extension of Newton-type algorithms for nonlinear process control, Automatica 52(2): 281-286. Zbl0825.93181
- Deng, J., Becerra, V.M. and Stobart, R. (2009). Input constraints handling in an MPC/feedback linearization scheme, International Journal of Applied Mathematics and Computer Science 19(2): 219-232, DOI: 10.2478/v10006-009-0018-2. Zbl1167.93336
- Doyle, F., Ogunnaike, B. and Pearson, R. (1995). Nonlinear model-based control using second-order Volterra models, Automatica 31(5): 697-714. Zbl0823.93022
- Ellis, M., Durand, H. and Christofides, P. (2014). A tutorial review of economic model predictive control methods, Journal of Process Control 24(8): 1156-1178.
- Gonzalez, A., Adam, E. and Marchetti, J. (2008). Conditions for offset elimination in state space receding horizon controllers: A tutorial analysis, Chemical Engineering and Processing 47(12): 2184-2194.
- Kuure-Kinsey, M., Cutright, R. and Bequette, B. (2006). Computationally efficient neural predictive control based on a feedforward architecture, Industrial and Engineering Chemistry Research 45(25): 8575-8582.
- Ławryńczuk, M. (2007). A family of model predictive control algorithms with artificial neural networks, International Journal of Applied Mathematics and Computer Science 17(2): 217-232, DOI: 10.2478/v10006-007-0020-5. Zbl1119.93350
- Ławryńczuk, M. (2014). Computationally Efficient Model Predictive Control Algorithms: A Neural Network Approach, Studies in Systems, Decision and Control, Vol. 3, Springer, Heidelberg. Zbl1330.93002
- Lee, J. and Ricker, N. (1994). Extended Kalman filter based nonlinear model predictive control, Industrial and Engineering Chemistry Research 33(6): 1530-1541.
- Maciejowski, J. (2002). Predictive Control with Constraints, Prentice Hall, Harlow. Zbl0978.93002
- Maeder, U. and Morari, M. (2010). Offset-free reference tracking with model predictive control, Automatica 46(9): 1469-1476. Zbl1201.93071
- Mayne, D. (2014). Model predictive control: Recent developments and future promise, Automatica 50(12): 2967-2986. Zbl1309.93060
- Megías, D., Serrano, J. and Ghoumari, M.E. (1999). Extended linearised predictive control: Practical control algorithms for non-linear systems, Proceedings of the European Control Conference, ECC 1999, Karlsruhe, Germany, F883.
- Mu, J., Rees, D. and Liu, G. (2005). Advanced controller design for aircraft gas turbine engines, Journal of Process Control 13(8): 1001-1015.
- Muske, K. and Badgwell, T. (2002). Disturbance modeling for offset-free linear model predictive control, Journal of Process Control 12(5): 617-632.
- Pannocchia, G. and Bemporad, A. (2007). Combined design of disturbance model and observer for offset-free model predictive control, IEEE Transactions on Automatic Control 52(6): 1048-1053.
- Pannocchia, G. and Rawlings, J. (2003). Disturbance models for offset-free model predictive control, AIChE Journal 49(2): 426-437.
- Patan, K. and Korbicz, J. (2012). Nonlinear model predictive control of a boiler unit: A fault tolerant control study, International Journal of Applied Mathematics and Computer Science 22(1): 225-237, DOI: 10.2478/v10006-012-0017-6. Zbl1273.93071
- Qin, S. and Badgwell, T. (2003). A survey of industrial model predictive control technology, Control Engineering Practice 11(7): 733-764.
- Rawlings, J. and Mayne, D. (2009). Model Predictive Control: Theory and Design, Nob Hill Publishing, Madison.
- Simon, D. (2006). Optimal State Estimation: Kalman, H∞ and Nonlinear Approaches, John Wiley & Sons, Hoboken, NJ.
- Tatjewski, P. (2007). Advanced Control of Industrial Processes, Structures and Algorithms, Springer, London. Zbl1134.93037
- Tatjewski, P. (2010). Supervisory predictive control and on-line set-point optimization, International Journal of Applied Mathematics and Computer Science 20(3): 483-495, DOI: 10.2478/v10006-010-0035-1. Zbl1211.93036
- Tatjewski, P. (2014). Disturbance modeling and state estimation for offset-free predictive control with state-space models, International Journal of Applied Mathematics and Computer Science 24(2): 313-323, DOI: 10.2478/amcs-2014-0023. Zbl1293.93307
- Tatjewski, P. and Ławryńczuk, M. (2006). Soft computing in model-based predictive control, International Journal of Applied Mathematics and Computer Science 16(1): 7-26. Zbl1334.93068
- Wang, L. (2007). Model Predictive Control System Design and Implementation Using MATLAB, Springer, London.