Weak amenability for the second dual of Banach modules
Fatemeh Anousheh; Davood Ebrahimi Bagha; Abasalt Bodaghi
Open Mathematics (2015)
- Volume: 13, Issue: 1
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topFatemeh Anousheh, Davood Ebrahimi Bagha, and Abasalt Bodaghi. "Weak amenability for the second dual of Banach modules." Open Mathematics 13.1 (2015): null. <http://eudml.org/doc/275913>.
@article{FatemehAnousheh2015,
abstract = {Let A be a Banach algebra, E be a Banach A-bimodule and Δ E → A be a bounded Banach A-bimodule homomorphism. It is shown that under some mild conditions, the weakΔ''-amenability of E'' (as an A''-bimodule) necessitates weak Δ-amenability of E (as an A-bimodule). Some examples of weak-amenable Banach modules are provided as well.},
author = {Fatemeh Anousheh, Davood Ebrahimi Bagha, Abasalt Bodaghi},
journal = {Open Mathematics},
keywords = {Banach modules; Module amenability; Weak module amenability},
language = {eng},
number = {1},
pages = {null},
title = {Weak amenability for the second dual of Banach modules},
url = {http://eudml.org/doc/275913},
volume = {13},
year = {2015},
}
TY - JOUR
AU - Fatemeh Anousheh
AU - Davood Ebrahimi Bagha
AU - Abasalt Bodaghi
TI - Weak amenability for the second dual of Banach modules
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - null
AB - Let A be a Banach algebra, E be a Banach A-bimodule and Δ E → A be a bounded Banach A-bimodule homomorphism. It is shown that under some mild conditions, the weakΔ''-amenability of E'' (as an A''-bimodule) necessitates weak Δ-amenability of E (as an A-bimodule). Some examples of weak-amenable Banach modules are provided as well.
LA - eng
KW - Banach modules; Module amenability; Weak module amenability
UR - http://eudml.org/doc/275913
ER -
References
top- [1] Amini M., Module amenability for semigroup algebras, Semigroup Forum, 69 (2004), 243–254. Zbl1059.43001
- [2] Bodaghi A., n-homomorphism amenability, Proc. Rom. Aca., Series A, 14, No. 2 (2013), 101–105.
- [3] Bodaghi A., Eshaghi Gordji M., Medghalchi A.R., A generalization of the weak amenability of Banach algebras, Banach J. Math. Anal., 3, no. 1 (2009), 131–142. Zbl1163.46034
- [4] Bodaghi A., Ettefagh M., Eshaghi Gordji M., Medghalchi A.R., Module structures on iterated duals of Banach algebras, An. St. Univ. Ovidius Constanta.,18 (1) (2010), 63–80. Zbl1212.46068
- [5] Dales H. G., Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000. Zbl0981.46043
- [6] Dales H. G., Ghahramani F., Grønbæk N., Derivations into iterated duals of Banach algebras, Studia Math., 128 (1998), 19–54. Zbl0903.46045
- [7] Ebrahimi Bagha D., Amini M., Amenability for Banach modules, CUBO, A Mathematical Journal, 13 (2011), 127–137. Zbl1258.46020
- [8] Eshaghi Gordji M., Filali M., Weak amenability of the second dual of a Banach algebra, Studia Math., 182 (2007), 205-213. Zbl1135.46027
- [9] Ettefagh M., The third dual of a Banach algebra, Studia. Sci. Math. Hung., 45 (2008), 1–11. [WoS] Zbl1174.46022
- [10] Ghahramani F., Laali J., Amenability and topological centres of the scond duals of Banach algebras, Bull. Astral. Math. Soc., 65 (2002), 191–197. Zbl1029.46116
- [11] Ghahramani F., Loy R. J., Generalized notions of amenability, J. Funct. Anal., 208 (2004), 229–260. [WoS] Zbl1045.46029
- [12] Ghahramani F., Loy R. J., Willis G. A., Amenability and weak amenability of second conjugate Banach algebaras, Proc. Amer. Math. Soc., 124 (1996), 1489–1497. Zbl0851.46035
- [13] Grønbæk N., Weak and cyclic amenability for non-commutative Banach algebras, Proc. Edinburgh Math. Soc., 35 (1992), 315–328. Zbl0760.46043
- [14] Johnson B. E., Cohomology of Banach algebras, Mem. Amer. Math. Soc., 127, 1972. Zbl0246.46040
- [15] Johnson B. J., Weak amenability of group algebras, Bull. London Math. Soc., 23 (1991), 281–284. Zbl0757.43002
- [16] Medghalchi A. R., Yazdanpanah T., n-weak amenability and strong double limit property, Bull. Korean Math. Soc., 42 (2005), 359–367. Zbl1083.46027
- [17] Pym J. S., The convolution of functionals on spaces of bounded functions, Proc. London Math. Soc., 15 (1965), 84–104. Zbl0135.35503
- [18] Runde V., Lectures on amenability, in: Lecture Notes in Mathematic, vol. 1774, Springer-Verlag, Berlin, 2002. Zbl0999.46022
- [19] Sangani-Monfared M., Character amenability of Banach algebras, Math. Proc. Camb. Phil. Soc., 144 (2008), 697–706. Zbl1153.46029
- [20] Watanabe S., A Banach algebra which is an ideal in the second dual algebra, Sci. Rep. Niigata Univ. ser., 11 (1974), 95–101. Zbl0359.46034
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.