Weak amenability for the second dual of Banach modules

Fatemeh Anousheh; Davood Ebrahimi Bagha; Abasalt Bodaghi

Open Mathematics (2015)

  • Volume: 13, Issue: 1
  • ISSN: 2391-5455

Abstract

top
Let A be a Banach algebra, E be a Banach A-bimodule and Δ E → A be a bounded Banach A-bimodule homomorphism. It is shown that under some mild conditions, the weakΔ''-amenability of E'' (as an A''-bimodule) necessitates weak Δ-amenability of E (as an A-bimodule). Some examples of weak-amenable Banach modules are provided as well.

How to cite

top

Fatemeh Anousheh, Davood Ebrahimi Bagha, and Abasalt Bodaghi. "Weak amenability for the second dual of Banach modules." Open Mathematics 13.1 (2015): null. <http://eudml.org/doc/275913>.

@article{FatemehAnousheh2015,
abstract = {Let A be a Banach algebra, E be a Banach A-bimodule and Δ E → A be a bounded Banach A-bimodule homomorphism. It is shown that under some mild conditions, the weakΔ''-amenability of E'' (as an A''-bimodule) necessitates weak Δ-amenability of E (as an A-bimodule). Some examples of weak-amenable Banach modules are provided as well.},
author = {Fatemeh Anousheh, Davood Ebrahimi Bagha, Abasalt Bodaghi},
journal = {Open Mathematics},
keywords = {Banach modules; Module amenability; Weak module amenability},
language = {eng},
number = {1},
pages = {null},
title = {Weak amenability for the second dual of Banach modules},
url = {http://eudml.org/doc/275913},
volume = {13},
year = {2015},
}

TY - JOUR
AU - Fatemeh Anousheh
AU - Davood Ebrahimi Bagha
AU - Abasalt Bodaghi
TI - Weak amenability for the second dual of Banach modules
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - null
AB - Let A be a Banach algebra, E be a Banach A-bimodule and Δ E → A be a bounded Banach A-bimodule homomorphism. It is shown that under some mild conditions, the weakΔ''-amenability of E'' (as an A''-bimodule) necessitates weak Δ-amenability of E (as an A-bimodule). Some examples of weak-amenable Banach modules are provided as well.
LA - eng
KW - Banach modules; Module amenability; Weak module amenability
UR - http://eudml.org/doc/275913
ER -

References

top
  1. [1] Amini M., Module amenability for semigroup algebras, Semigroup Forum, 69 (2004), 243–254. Zbl1059.43001
  2. [2] Bodaghi A., n-homomorphism amenability, Proc. Rom. Aca., Series A, 14, No. 2 (2013), 101–105. 
  3. [3] Bodaghi A., Eshaghi Gordji M., Medghalchi A.R., A generalization of the weak amenability of Banach algebras, Banach J. Math. Anal., 3, no. 1 (2009), 131–142. Zbl1163.46034
  4. [4] Bodaghi A., Ettefagh M., Eshaghi Gordji M., Medghalchi A.R., Module structures on iterated duals of Banach algebras, An. St. Univ. Ovidius Constanta.,18 (1) (2010), 63–80. Zbl1212.46068
  5. [5] Dales H. G., Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000. Zbl0981.46043
  6. [6] Dales H. G., Ghahramani F., Grønbæk N., Derivations into iterated duals of Banach algebras, Studia Math., 128 (1998), 19–54. Zbl0903.46045
  7. [7] Ebrahimi Bagha D., Amini M., Amenability for Banach modules, CUBO, A Mathematical Journal, 13 (2011), 127–137. Zbl1258.46020
  8. [8] Eshaghi Gordji M., Filali M., Weak amenability of the second dual of a Banach algebra, Studia Math., 182 (2007), 205-213. Zbl1135.46027
  9. [9] Ettefagh M., The third dual of a Banach algebra, Studia. Sci. Math. Hung., 45 (2008), 1–11. [WoS] Zbl1174.46022
  10. [10] Ghahramani F., Laali J., Amenability and topological centres of the scond duals of Banach algebras, Bull. Astral. Math. Soc., 65 (2002), 191–197. Zbl1029.46116
  11. [11] Ghahramani F., Loy R. J., Generalized notions of amenability, J. Funct. Anal., 208 (2004), 229–260. [WoS] Zbl1045.46029
  12. [12] Ghahramani F., Loy R. J., Willis G. A., Amenability and weak amenability of second conjugate Banach algebaras, Proc. Amer. Math. Soc., 124 (1996), 1489–1497. Zbl0851.46035
  13. [13] Grønbæk N., Weak and cyclic amenability for non-commutative Banach algebras, Proc. Edinburgh Math. Soc., 35 (1992), 315–328. Zbl0760.46043
  14. [14] Johnson B. E., Cohomology of Banach algebras, Mem. Amer. Math. Soc., 127, 1972. Zbl0246.46040
  15. [15] Johnson B. J., Weak amenability of group algebras, Bull. London Math. Soc., 23 (1991), 281–284. Zbl0757.43002
  16. [16] Medghalchi A. R., Yazdanpanah T., n-weak amenability and strong double limit property, Bull. Korean Math. Soc., 42 (2005), 359–367. Zbl1083.46027
  17. [17] Pym J. S., The convolution of functionals on spaces of bounded functions, Proc. London Math. Soc., 15 (1965), 84–104. Zbl0135.35503
  18. [18] Runde V., Lectures on amenability, in: Lecture Notes in Mathematic, vol. 1774, Springer-Verlag, Berlin, 2002. Zbl0999.46022
  19. [19] Sangani-Monfared M., Character amenability of Banach algebras, Math. Proc. Camb. Phil. Soc., 144 (2008), 697–706. Zbl1153.46029
  20. [20] Watanabe S., A Banach algebra which is an ideal in the second dual algebra, Sci. Rep. Niigata Univ. ser., 11 (1974), 95–101. Zbl0359.46034

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.