A Journey from Statistics and Probability to Risk Theory An interview with Ludger Rüschendorf

Fabrizio Durante; Giovanni Puccetti; Matthias Scherer

Dependence Modeling (2015)

  • Volume: 3, Issue: 1, page 182-195, electronic only
  • ISSN: 2300-2298

How to cite

top

Fabrizio Durante, Giovanni Puccetti, and Matthias Scherer. "A Journey from Statistics and Probability to Risk Theory An interview with Ludger Rüschendorf." Dependence Modeling 3.1 (2015): 182-195, electronic only. <http://eudml.org/doc/275922>.

@article{FabrizioDurante2015,
author = {Fabrizio Durante, Giovanni Puccetti, Matthias Scherer},
journal = {Dependence Modeling},
language = {eng},
number = {1},
pages = {182-195, electronic only},
title = {A Journey from Statistics and Probability to Risk Theory An interview with Ludger Rüschendorf},
url = {http://eudml.org/doc/275922},
volume = {3},
year = {2015},
}

TY - JOUR
AU - Fabrizio Durante
AU - Giovanni Puccetti
AU - Matthias Scherer
TI - A Journey from Statistics and Probability to Risk Theory An interview with Ludger Rüschendorf
JO - Dependence Modeling
PY - 2015
VL - 3
IS - 1
SP - 182
EP - 195, electronic only
LA - eng
UR - http://eudml.org/doc/275922
ER -

References

top
  1. [1] Andersen, P. K., O. Borgan, R. D. Gill, and N. Keiding (2012). Statistical Models Based on Counting Processes. Springer- Verlag, New York. Zbl0769.62061
  2. [2] Bickel, P. J., Y. Ritov, and J. A. Wellner (1991). Efficient estimation of linear functionals of a probability measure P with known marginal distributions. Ann. Statist. 19(3), 1316–1346. [Crossref] Zbl0742.62034
  3. [3] Brenier, Y. (1991). Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44(4), 375–417. Zbl0738.46011
  4. [4] Bruss, F. T. and L. Rüschendorf (2010). On the perception of time. Gerontology 56(4), 361–370. [Crossref] 
  5. [5] Dall’Aglio, G., S. Kotz, and G. Salinetti (Eds.) (1991). Advances in Probability Distributions with Given Marginals. Kluwer Academic Publishers Group, Dordrecht. 
  6. [6] Deheuvels, P. (1979). La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci.(5) 65(6), 274–292. Zbl0422.62037
  7. [7] Deming, W. E. and F. F. Stephan (1940). On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Stat. 11(4), 427–444. [Crossref] Zbl0024.05502
  8. [8] Döhler, S. and L. Rüschendorf (2003). Nonparametric estimation of regression functions in point process models. Stat. Inference Stoch. Process. 6(3), 291–307. Zbl1031.62032
  9. [9] Durante, F. and C. Sempi (2010). Copula theory: an introduction. In Copula Theory and Its Applications, Volume 198 of Lecture Notes in Statistics, pp. 3–31. Springer, Berlin. 
  10. [10] Embrechts, P. and G. Puccetti (2006). Bounds for functions of dependent risks. Finance Stoch. 10(3), 341–352. Zbl1101.60010
  11. [11] Embrechts, P., G. Puccetti, and L. Rüschendorf (2013). Model uncertainty and VaR aggregation. J. Bank. Financ. 37(8), 2750– 2764. [WoS][Crossref] 
  12. [12] Fermanian, J.-D., D. Radulovic, M. Wegkamp (2004). Weak convergence of empirical copula processes. Bernoulli 10(5), 847–860. [Crossref] Zbl1068.62059
  13. [13] Genest, C., J.-F. Quessy, B. Rémillard (2007). Asymptotic local efficiency of Cramér-von Mises tests for multivariate independence. Ann. Statist. 35(1), 166–191. [Crossref] Zbl1114.62058
  14. [14] Goll, T. and L. Rüschendorf (2001). Minimax and minimal distance martingale measures and their relationship to portfolio optimization. Finance Stoch. 5(4), 557–581. Zbl0997.91022
  15. [15] Gray, L. and D. Wilson (1980). Nonnegative factorization of positive semidefinite nonnegative matrices. Linear Algebra Appl. 31, 119 – 127. Zbl0434.15012
  16. [16] Grenander, U. (1968). Probabilities on Algebraic Structures (2nd edition). Almqvist & Wiksell, Stockholm and John Wiley, New York. Zbl0131.34804
  17. [17] Hall, P. (1935). On representatives of subsets. J. London Math. Soc. s1-10(1), 26–30. Zbl0010.34503
  18. [18] Hardy, G. H., J. E. Littlewood, and G. Pólya (1952). Inequalities (2nd edition). Cambridge University Press, Camdridge. Zbl0047.05302
  19. [19] Holtrode, R. and L. Rüschendorf (1993). Differentiablity of point process models and asymptotic efficiency of differentiable functionals. Statistics 24(1), 17–42. [Crossref] Zbl0808.62076
  20. [20] Iosifescu, M. and P. Tautu (1973). Stochastic Processes and Applications in Biology and Medicine. Springer-Verlag, Berlin- New York. Zbl0262.92002
  21. [21] Karlin, S. and J. McGregor (1964). Direct product branching processes and related Markov chains. Proc. Nat. Acad. Sci. U.S.A. 51, 598–602. [Crossref] Zbl0129.30504
  22. [22] Kellerer, H. G. (1984). Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete 67(4), 399–432. [Crossref] Zbl0535.60002
  23. [23] Kolmogorov, A. N. (1957). On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition. Dokl. Akad. Nauk SSSR 114, 953–956. Zbl0090.27103
  24. [24] Linnik, Y. V. (1975). Problems of Analytical Statistics. Statistical Publishing Society, Calcutta. 
  25. [25] Mainik, G., G. Mitov, and L. Rüschendorf (2015). Portfolio optimization for heavy-tailed assets: Extreme risk index vs. Markowitz. J. Empirical Finance 32, 115–134. 
  26. [26] Mainik, G. and L. Rüschendorf (2010). Onoptimal portfolio diversificationwith respect to extreme risks. Finance Stoch. 14(4), 593–623. Zbl1226.91069
  27. [27] Moore, D. S. and M. C. Spruill (1975). Unified large-sample theory of general chi-squared statistics for tests of fit. Ann. Statist. 3, 599–616. Zbl0322.62047
  28. [28] Pitt, L. D. (1982). Positively correlated normal variables are associated. Ann. Probab. 10, 496–499. [Crossref] Zbl0482.62046
  29. [29] Puccetti, G. and L. Rüschendorf (2012). Computation of sharp bounds on the distribution of a function of dependent risks. J. Comput. Appl. Math. 236(7), 1833–1840. [WoS][Crossref] Zbl1241.65019
  30. [30] Rachev, S. T. and L. Rüschendorf (1998). Mass Transportation Problems. Vol. I–II. Springer, New York. Zbl0990.60500
  31. [31] Rüschendorf, L. (1976). Asymptotic distributions of multivariate rank order statistics. Ann. Statist. 4, 912–923. [Crossref] Zbl0359.62040
  32. [32] Rüschendorf, L. (1981a). Sharpness of Fréchet bounds. Z. Wahrsch. Verw. Gebiete 57(2), 293–302. [Crossref] Zbl0445.60002
  33. [33] Rüschendorf, L. (1981b). Stochastically ordered distributions and monotonicity of the OC-function of sequential probability ratio tests. Math. Operationsforsch. Statist. Ser. Statist. 12(3), 327–338. Zbl0481.62063
  34. [34] Rüschendorf, L. (1982). Random variables with maximum sums. Adv. Appl. Probab. 14, 623–632. [Crossref] Zbl0487.60026
  35. [35] Rüschendorf, L. (1991). Fréchet-bounds and their applications. In Advances in Probability Distributions with Given Marginals, Volume 67, pp. 151–187. Dordrecht: Kluwer Acad. Publ. Zbl0744.60005
  36. [36] Rüschendorf, L. (1995). Convergence of the iterative proportional fitting procedure. Ann. Statist. 23, 1160–1174. [Crossref] Zbl0851.62038
  37. [37] Rüschendorf, L. (2013). Mathematical Risk Analysis. Dependence, Risk Bounds, Optimal Allocations and Portfolios. Springer, Heidelberg. Zbl1266.91001
  38. [38] Rüschendorf, L. (2014). Mathematische Statistik. Springer, Berlin. 
  39. [39] Rüschendorf, L. and S. T. Rachev (1990). A characterization of random variables with minimum L2-distance. J. Multivariate Anal. 32(1), 48–54. [Crossref] Zbl0688.62034
  40. [40] Rüschendorf, L., B. Schweizer, and M. Taylor (Eds.) (1996). Distributions with FixedMarginals and Related Topics, Hayward, CA. Inst. Math. Statist. 
  41. [41] Rüschendorf, L. and W. Thomsen (1998). Closedness of sum spaces and the generalized ’Schrödinger problem’. Theory Probab. Appl. 42(3), 483–494. 
  42. [42] Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8, 229–231. Zbl0100.14202
  43. [43] Strasser, H. (1985). Mathematical Theory of Statistics: Statistical Experiments and Asymptotic Decision Theory. Walter de Gruyter & Co., Berlin. Zbl0594.62017
  44. [44] Stute, W. (1984). The oscillation behavior of empirical processes: the multivariate case. Ann. Probab. 12, 361–379. [Crossref] Zbl0533.62037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.