Some fractional integral formulas for the Mittag-Leffler type function with four parameters

Praveen Agarwal; Juan J. Nieto

Open Mathematics (2015)

  • Volume: 13, Issue: 1
  • ISSN: 2391-5455

Abstract

top
In this paper we present some results from the theory of fractional integration operators (of Marichev- Saigo-Maeda type) involving the Mittag-Leffler type function with four parameters ζ , γ, Eμ, ν[z] which has been recently introduced by Garg et al. Some interesting special cases are given to fractional integration operators involving some Special functions.

How to cite

top

Praveen Agarwal, and Juan J. Nieto. "Some fractional integral formulas for the Mittag-Leffler type function with four parameters." Open Mathematics 13.1 (2015): null. <http://eudml.org/doc/275926>.

@article{PraveenAgarwal2015,
abstract = {In this paper we present some results from the theory of fractional integration operators (of Marichev- Saigo-Maeda type) involving the Mittag-Leffler type function with four parameters ζ , γ, Eμ, ν[z] which has been recently introduced by Garg et al. Some interesting special cases are given to fractional integration operators involving some Special functions.},
author = {Praveen Agarwal, Juan J. Nieto},
journal = {Open Mathematics},
keywords = {Marichev-Saigo-Maeda type fractional integral operators; Mittag-Leffler type function with four parameters; Generalized Wright function},
language = {eng},
number = {1},
pages = {null},
title = {Some fractional integral formulas for the Mittag-Leffler type function with four parameters},
url = {http://eudml.org/doc/275926},
volume = {13},
year = {2015},
}

TY - JOUR
AU - Praveen Agarwal
AU - Juan J. Nieto
TI - Some fractional integral formulas for the Mittag-Leffler type function with four parameters
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - null
AB - In this paper we present some results from the theory of fractional integration operators (of Marichev- Saigo-Maeda type) involving the Mittag-Leffler type function with four parameters ζ , γ, Eμ, ν[z] which has been recently introduced by Garg et al. Some interesting special cases are given to fractional integration operators involving some Special functions.
LA - eng
KW - Marichev-Saigo-Maeda type fractional integral operators; Mittag-Leffler type function with four parameters; Generalized Wright function
UR - http://eudml.org/doc/275926
ER -

References

top
  1. [1] Agarwal P, Trujillo J J, Rogosin S V, Certain fractional integral operators and the generalized multiindex Mittag-Leffler functions, Proc. Indian Acad. Sci. Math. Sci. (In press) Zbl1323.33020
  2. [2] Agarwal P, Chnad M and Jain S, Certain integrals involving generalized Mittag-Leffler functions, Proc. Nat. Acad. Sci. India Sect. A, (2015); doi:10.1007/s40010-015-0209-1[Crossref] Zbl1325.44003
  3. [3] Agarwal P, Jain S, Chnad M, Dwivedi S K, Kumar S, Bessel functions Associated with Saigo-Maeda fractional derivative operators, J. Fract. Calc. 5(2) (2014) 102-112 
  4. [4] Al-Bassam M A, Luchko Y F, On generalized fractional calculus and it application to the solution of integro-differential equations. J. Fract. Calc. 7 (1995) 69-88 Zbl0840.44002
  5. [5] Baleanu D, Diethelm K, Scalas E, Trujillo J J, Fractional Calculus: Models and Numerical Methods (2012) (N. Jersey, London, Singapore: World Scientific Publishers) 
  6. [6] Capelas de Oliveira E, Mainardi F, VAZ J Jr, Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics, Eur. Phys. J. Special Topics 193 (2011) 161-171;http://dx.doi.org/10.1140/epjst/e2011-01388-0 [Crossref] 
  7. [7] Caponetto R, Dongola G, Fortuna L, and Petráš I, Fractional Order Systems: Modeling and Control Applications (2010) (Singapore: World Scientific Pub Co Inc) 
  8. [8] Caputo M, Mainardi F, Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser. II). 1 (1971) 161-198 
  9. [9] Choi J, Agarwal P, A note on fractional integral operator associate with multiindex Mittag-Leffler functions, Filomat (In press) 
  10. [10] Choi J, Agarwal P, Certain integral transform and fractional integral formulas for the generalized Gauss hypergeometric functions, Abstr. Appl. Anal. 2014 (2014) 735946,7 pages;available online at http://dx.doi.org/10.1155/2014/735946 [Crossref] 
  11. [11] Diethelm K, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type (2010) (Berlin: Springer) Springer Lecture Notes in Mathematics No 2004 Zbl1215.34001
  12. [12] Dzrbashjan M M, On the integral transforms generated by the generalized Mittag-Leffler function, Izv. AN Arm. SSR 13(3) (1960) 21-63 
  13. [13] Garg M, A. Sharma and P. Manohar, A Generalized Mittag-Leffler Type Function with Four Parameters, Thai.J. Math., (In press) 
  14. [14] Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V., Mittag-Leffler Functions, Related Topics and Applications (Springer 2014) 454 pages. http://www.springer.com/us/book/9783662439296 Zbl1309.33001
  15. [15] Gorenflo R, Mainardi F, Fractional calculus: integral and differential equations of fractional order, in: A. Carpinteri and F. Mainardi (Editors) Fractals and Fractional Calculus in Continuum Mechanics 223-276 (1997) (Springer Verlag, Wien) 
  16. [16] Haubold H J, Mathai A M, and Saxena R K, Mittag-Leffler functions and their applications, J. Appl. Math. 2011 (2011) 298628, 51 pages;available online at http://dx.doi.org/10.1155/2011/298628 [Crossref] Zbl1218.33021
  17. [17] Hilfer R (Edt), Applications of Fractional Calculus in Physics (2000) (New Jersey, London, Hong Kong:Word Scientific Publishing Co.) 
  18. [18] Kilbas A A, Koroleva A A, Rogosin S V, Multi-parametric Mittag-Leffler functions and their extension, Fract. Calc. Appl. Anal. 16(2) (2013) 378-404 Zbl1312.33058
  19. [19] Kilbas A A, Saigo M and Saxena R K, Solution of Volterra integro-differential equations with generalized Mittag-Leffler function in the kernels, J. Integral Equations Appl. 14(4) (2002) 377-386 Zbl1041.45011
  20. [20] Kilbas A A, Srivastava H M, Trujillo J J, Theory and Applications of Fractional Differential Equations (2006)North-Holland Mathematics Studies. 204 (Elsevier, Amsterdam, etc) 
  21. [21] Kiryakova V,Generalized Fractional Calculus and Applications (1994) (Harlow, Longman) Zbl0882.26003
  22. [22] Kiryakova V, Multiindex Mittag-Leffler functions, related Gelfond-Leontiev operators and Laplace type integral transforms, Fract. Calc. Appl. Anal. 2(4) (1999) 445-462 Zbl1111.33300
  23. [23] Kiryakova V, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math. 118 (2000) 241-259[Crossref] Zbl0966.33011
  24. [24] Kiryakova V, On two Saigo’s fractional integral operators in the class of univalent functions, Fract. Calc. Appl. Anal. 9(2) (2006) 160-176 Zbl1138.30007
  25. [25] Kiryakova V S, The special functions of fractional calculus as generalized fractional calculus operators od some basic functions, Comp. Math. Appl. 59(3) (2010) 1128-1141 Zbl1189.26007
  26. [26] Kiryakova V S, The multi-index Mittag-Leffler function as an important class of special functions of fractional calculus, Comp. Math. Appl. 59(5) (2010) 1885-1895 Zbl1189.33034
  27. [27] Mainardi F, Fractional Calculus and Waves in Linear Viscoelasticity (2010) (London: Imperial College Press) 
  28. [28] Marichev O I, Volterra equation of Mellin convolution type with a Horn function in the kernel, Izv. AN BSSR Ser. Fiz.-Mat. Nauk No. 1 (1974) 128-129 
  29. [29] Mathai A M, Saxena R K, The H-function with Applications in Statistics and Other Disciplines, Halsted Press [John Wiley & Sons], New York, London, Sydney, 1978 Zbl0382.33001
  30. [30] Mathai A M, Saxena R K, Haubold H J, The H-function. Theory and Applications (2010) (Dordrecht: Springer) 
  31. [31] McBride A C, Fractional Calculus and Integral Transforms of Gen- eralized Functions (1979) (Research Notes in Math. 31) (Pitman, London) 
  32. [32] Miller K S, Ross B, An Introduction to the Fractional Calculus and Fractional Differential Equations (1993) (New York: John Wiley and Sons) Zbl0789.26002
  33. [33] Mittag-Leffler G M, Sur la nouvelle fonction E .x/, C. R. Acad. Sci. Paris 137 (1903) 554-558 
  34. [34] NIST Handbook of Mathematical Functions. Edited by Frank W.J. Olver (editor-in-chief), D.W. Lozier, R.F. Boisvert, and C.W. Clark. Gaithersburg, Maryland, National Institute of Standards and Technology, and New York, Cambridge University Press, 951 + xv pages and a CD, (2010) 
  35. [35] Oldham K B, Spanier J, The Fractional Calculus (1974) (New York:Academic Press) Zbl0428.26004
  36. [36] Podlubny I, Fractional Differential Equations (1999) (New York: Academic Press) 
  37. [37] Prabhakar T R, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J. 19 (1971) 7-15 Zbl0221.45003
  38. [38] Prakasa Rao B L S, Statistical inference for fractional diffusion processes (2010) (Chichester: John Wiley & Sons Ltd.) 
  39. [39] Rabotnov Yu N, Elements of Hereditary Solid Mechanics (1980) (Moscow:MIR) 
  40. [40] Rogosin S.V., "The Role of the Mittag-Leffler Function in Fractional Modeling" Mathematics 2015, 3, 368-381; doi:10.3390/math3020368[Crossref] Zbl1318.33036
  41. [41] Saigo M, On generalized fractional calculus operators. In: Recent Advances in Applied Mathematics (Proc. Internat. Workshop held at Kuwait Univ.). Kuwait Univ., Kuwait, (1996) 441-450 
  42. [42] Saigo M, Maeda N, More generalization of fractional calculus, In: Transform Methods and Special Functions, Varna 1996 (Proc. 2nd Intern. Workshop, P. Rusev, I. Dimovski, V. Kiryakova Eds.), IMI-BAS, Sofia, (1998) 386-400 Zbl0926.26003
  43. [43] Samko S G, Kilbas A A, Marichev O I, Fractional Integrals and Derivatives: Theory and Applications (1993) (New York and London: Gordon and Breach Science Publishers) 
  44. [44] Saxena R K and Nishimoto K, N-Fractional Calculus of Generalized Mittag- Leffler functions, J. Fract. Calc. 37(2010) 43-52 Zbl1195.26027
  45. [45] Saxena R K, Saigo M, Generalized fractional calculus of the H-function associated with the Appell function, J. Fract. Calc. 19 (2001) 89-104 Zbl0984.33006
  46. [46] Shukla A K and Prajapati J C, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl. 336 (2007) 797-811 Zbl1122.33017
  47. [47] Srivastava H M and Agarwal P, Certain fractional integral operators and the generalized incomplete hypergeometric functions, Appl. Appl. Math. 8(2) (2013) 333-345 Zbl1282.26012
  48. [48] Srivastava H M, Choi J, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001 Zbl1014.33001
  49. [49] Srivastava H M, Choi J, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012 Zbl1239.33002
  50. [50] Srivastava H M, Gupta K C, Goyal S P, The H-functions of One and Two Variables with Applications, South Asian Publishers, New Delhi, Madras, 1982 Zbl0506.33007
  51. [51] Srivastava H M and Saigo M, Multiplication of fractional calculus operators and boundary value problems involving the eulerdarboux equation, J. Math. Anal. Appl. 121 (1987) 325-369[Crossref] Zbl0875.35015
  52. [52] Srivastava H M, Tomovski LZ, Fractional claculus with an integral operator containing generalized Mittag-Leffler function in the kernel, Appl. Math. Comput. 211(1) (2009) 198-210[Crossref] Zbl05562749
  53. [53] Tarasov V E, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media (2010) (Beijing: Springer, Heidelberg; Higher Education Press) 
  54. [54] Tenreiro Machado J A, Kiryakova V, Mainardi F, A poster about the old history of fractional calculus, Fract. Calc. Appl. Anal. 13 (4)(2010) 447-454 Zbl1222.26015
  55. [55] Tenreiro Machado J A, Kiryakova V, Mainardi F, A poster about the recent history of fractional calculus, Fract. Calc. Appl. Anal. 13(3)(2010) 329-334 Zbl1221.26013
  56. [56] Tenreiro Machado J A, Kiryakova V, Mainardi F, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simulat. 16(3) (2011) 1140-1153; available online at http://dx.doi.org/10.1016/j.cnsns.2010.05.027 [Crossref] Zbl1221.26002
  57. [57] Uchaikin V V, Fractional derivatives for physicists and engineers. Vol. I. Background and theory(2013) (Beijing: Springer, Berlin - Higher Education Press) 
  58. [58] Uchaikin V V, Fractional derivatives for physicists and engineers, Vol. II Applications(2013) (Beijing: Springer, Berlin - Higher Education Press) 
  59. [59] Wiman A, Über den Fundamentalsatz in der Theorie der Funktionen E .x/, Acta Math. 29(1905) 191-201 
  60. [60] Zaslavsky G M, Hamiltonian Chaos and Fractional Dynamics (2005) (Oxford: Oxford University Press) Zbl1083.37002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.