Some fractional integral formulas for the Mittag-Leffler type function with four parameters
Praveen Agarwal; Juan J. Nieto
Open Mathematics (2015)
- Volume: 13, Issue: 1
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topPraveen Agarwal, and Juan J. Nieto. "Some fractional integral formulas for the Mittag-Leffler type function with four parameters." Open Mathematics 13.1 (2015): null. <http://eudml.org/doc/275926>.
@article{PraveenAgarwal2015,
abstract = {In this paper we present some results from the theory of fractional integration operators (of Marichev- Saigo-Maeda type) involving the Mittag-Leffler type function with four parameters ζ , γ, Eμ, ν[z] which has been recently introduced by Garg et al. Some interesting special cases are given to fractional integration operators involving some Special functions.},
author = {Praveen Agarwal, Juan J. Nieto},
journal = {Open Mathematics},
keywords = {Marichev-Saigo-Maeda type fractional integral operators; Mittag-Leffler type function with four parameters; Generalized Wright function},
language = {eng},
number = {1},
pages = {null},
title = {Some fractional integral formulas for the Mittag-Leffler type function with four parameters},
url = {http://eudml.org/doc/275926},
volume = {13},
year = {2015},
}
TY - JOUR
AU - Praveen Agarwal
AU - Juan J. Nieto
TI - Some fractional integral formulas for the Mittag-Leffler type function with four parameters
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - null
AB - In this paper we present some results from the theory of fractional integration operators (of Marichev- Saigo-Maeda type) involving the Mittag-Leffler type function with four parameters ζ , γ, Eμ, ν[z] which has been recently introduced by Garg et al. Some interesting special cases are given to fractional integration operators involving some Special functions.
LA - eng
KW - Marichev-Saigo-Maeda type fractional integral operators; Mittag-Leffler type function with four parameters; Generalized Wright function
UR - http://eudml.org/doc/275926
ER -
References
top- [1] Agarwal P, Trujillo J J, Rogosin S V, Certain fractional integral operators and the generalized multiindex Mittag-Leffler functions, Proc. Indian Acad. Sci. Math. Sci. (In press) Zbl1323.33020
- [2] Agarwal P, Chnad M and Jain S, Certain integrals involving generalized Mittag-Leffler functions, Proc. Nat. Acad. Sci. India Sect. A, (2015); doi:10.1007/s40010-015-0209-1[Crossref] Zbl1325.44003
- [3] Agarwal P, Jain S, Chnad M, Dwivedi S K, Kumar S, Bessel functions Associated with Saigo-Maeda fractional derivative operators, J. Fract. Calc. 5(2) (2014) 102-112
- [4] Al-Bassam M A, Luchko Y F, On generalized fractional calculus and it application to the solution of integro-differential equations. J. Fract. Calc. 7 (1995) 69-88 Zbl0840.44002
- [5] Baleanu D, Diethelm K, Scalas E, Trujillo J J, Fractional Calculus: Models and Numerical Methods (2012) (N. Jersey, London, Singapore: World Scientific Publishers)
- [6] Capelas de Oliveira E, Mainardi F, VAZ J Jr, Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics, Eur. Phys. J. Special Topics 193 (2011) 161-171;http://dx.doi.org/10.1140/epjst/e2011-01388-0 [Crossref]
- [7] Caponetto R, Dongola G, Fortuna L, and Petráš I, Fractional Order Systems: Modeling and Control Applications (2010) (Singapore: World Scientific Pub Co Inc)
- [8] Caputo M, Mainardi F, Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento (Ser. II). 1 (1971) 161-198
- [9] Choi J, Agarwal P, A note on fractional integral operator associate with multiindex Mittag-Leffler functions, Filomat (In press)
- [10] Choi J, Agarwal P, Certain integral transform and fractional integral formulas for the generalized Gauss hypergeometric functions, Abstr. Appl. Anal. 2014 (2014) 735946,7 pages;available online at http://dx.doi.org/10.1155/2014/735946 [Crossref]
- [11] Diethelm K, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type (2010) (Berlin: Springer) Springer Lecture Notes in Mathematics No 2004 Zbl1215.34001
- [12] Dzrbashjan M M, On the integral transforms generated by the generalized Mittag-Leffler function, Izv. AN Arm. SSR 13(3) (1960) 21-63
- [13] Garg M, A. Sharma and P. Manohar, A Generalized Mittag-Leffler Type Function with Four Parameters, Thai.J. Math., (In press)
- [14] Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V., Mittag-Leffler Functions, Related Topics and Applications (Springer 2014) 454 pages. http://www.springer.com/us/book/9783662439296 Zbl1309.33001
- [15] Gorenflo R, Mainardi F, Fractional calculus: integral and differential equations of fractional order, in: A. Carpinteri and F. Mainardi (Editors) Fractals and Fractional Calculus in Continuum Mechanics 223-276 (1997) (Springer Verlag, Wien)
- [16] Haubold H J, Mathai A M, and Saxena R K, Mittag-Leffler functions and their applications, J. Appl. Math. 2011 (2011) 298628, 51 pages;available online at http://dx.doi.org/10.1155/2011/298628 [Crossref] Zbl1218.33021
- [17] Hilfer R (Edt), Applications of Fractional Calculus in Physics (2000) (New Jersey, London, Hong Kong:Word Scientific Publishing Co.)
- [18] Kilbas A A, Koroleva A A, Rogosin S V, Multi-parametric Mittag-Leffler functions and their extension, Fract. Calc. Appl. Anal. 16(2) (2013) 378-404 Zbl1312.33058
- [19] Kilbas A A, Saigo M and Saxena R K, Solution of Volterra integro-differential equations with generalized Mittag-Leffler function in the kernels, J. Integral Equations Appl. 14(4) (2002) 377-386 Zbl1041.45011
- [20] Kilbas A A, Srivastava H M, Trujillo J J, Theory and Applications of Fractional Differential Equations (2006)North-Holland Mathematics Studies. 204 (Elsevier, Amsterdam, etc)
- [21] Kiryakova V,Generalized Fractional Calculus and Applications (1994) (Harlow, Longman) Zbl0882.26003
- [22] Kiryakova V, Multiindex Mittag-Leffler functions, related Gelfond-Leontiev operators and Laplace type integral transforms, Fract. Calc. Appl. Anal. 2(4) (1999) 445-462 Zbl1111.33300
- [23] Kiryakova V, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math. 118 (2000) 241-259[Crossref] Zbl0966.33011
- [24] Kiryakova V, On two Saigo’s fractional integral operators in the class of univalent functions, Fract. Calc. Appl. Anal. 9(2) (2006) 160-176 Zbl1138.30007
- [25] Kiryakova V S, The special functions of fractional calculus as generalized fractional calculus operators od some basic functions, Comp. Math. Appl. 59(3) (2010) 1128-1141 Zbl1189.26007
- [26] Kiryakova V S, The multi-index Mittag-Leffler function as an important class of special functions of fractional calculus, Comp. Math. Appl. 59(5) (2010) 1885-1895 Zbl1189.33034
- [27] Mainardi F, Fractional Calculus and Waves in Linear Viscoelasticity (2010) (London: Imperial College Press)
- [28] Marichev O I, Volterra equation of Mellin convolution type with a Horn function in the kernel, Izv. AN BSSR Ser. Fiz.-Mat. Nauk No. 1 (1974) 128-129
- [29] Mathai A M, Saxena R K, The H-function with Applications in Statistics and Other Disciplines, Halsted Press [John Wiley & Sons], New York, London, Sydney, 1978 Zbl0382.33001
- [30] Mathai A M, Saxena R K, Haubold H J, The H-function. Theory and Applications (2010) (Dordrecht: Springer)
- [31] McBride A C, Fractional Calculus and Integral Transforms of Gen- eralized Functions (1979) (Research Notes in Math. 31) (Pitman, London)
- [32] Miller K S, Ross B, An Introduction to the Fractional Calculus and Fractional Differential Equations (1993) (New York: John Wiley and Sons) Zbl0789.26002
- [33] Mittag-Leffler G M, Sur la nouvelle fonction E .x/, C. R. Acad. Sci. Paris 137 (1903) 554-558
- [34] NIST Handbook of Mathematical Functions. Edited by Frank W.J. Olver (editor-in-chief), D.W. Lozier, R.F. Boisvert, and C.W. Clark. Gaithersburg, Maryland, National Institute of Standards and Technology, and New York, Cambridge University Press, 951 + xv pages and a CD, (2010)
- [35] Oldham K B, Spanier J, The Fractional Calculus (1974) (New York:Academic Press) Zbl0428.26004
- [36] Podlubny I, Fractional Differential Equations (1999) (New York: Academic Press)
- [37] Prabhakar T R, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J. 19 (1971) 7-15 Zbl0221.45003
- [38] Prakasa Rao B L S, Statistical inference for fractional diffusion processes (2010) (Chichester: John Wiley & Sons Ltd.)
- [39] Rabotnov Yu N, Elements of Hereditary Solid Mechanics (1980) (Moscow:MIR)
- [40] Rogosin S.V., "The Role of the Mittag-Leffler Function in Fractional Modeling" Mathematics 2015, 3, 368-381; doi:10.3390/math3020368[Crossref] Zbl1318.33036
- [41] Saigo M, On generalized fractional calculus operators. In: Recent Advances in Applied Mathematics (Proc. Internat. Workshop held at Kuwait Univ.). Kuwait Univ., Kuwait, (1996) 441-450
- [42] Saigo M, Maeda N, More generalization of fractional calculus, In: Transform Methods and Special Functions, Varna 1996 (Proc. 2nd Intern. Workshop, P. Rusev, I. Dimovski, V. Kiryakova Eds.), IMI-BAS, Sofia, (1998) 386-400 Zbl0926.26003
- [43] Samko S G, Kilbas A A, Marichev O I, Fractional Integrals and Derivatives: Theory and Applications (1993) (New York and London: Gordon and Breach Science Publishers)
- [44] Saxena R K and Nishimoto K, N-Fractional Calculus of Generalized Mittag- Leffler functions, J. Fract. Calc. 37(2010) 43-52 Zbl1195.26027
- [45] Saxena R K, Saigo M, Generalized fractional calculus of the H-function associated with the Appell function, J. Fract. Calc. 19 (2001) 89-104 Zbl0984.33006
- [46] Shukla A K and Prajapati J C, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl. 336 (2007) 797-811 Zbl1122.33017
- [47] Srivastava H M and Agarwal P, Certain fractional integral operators and the generalized incomplete hypergeometric functions, Appl. Appl. Math. 8(2) (2013) 333-345 Zbl1282.26012
- [48] Srivastava H M, Choi J, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001 Zbl1014.33001
- [49] Srivastava H M, Choi J, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012 Zbl1239.33002
- [50] Srivastava H M, Gupta K C, Goyal S P, The H-functions of One and Two Variables with Applications, South Asian Publishers, New Delhi, Madras, 1982 Zbl0506.33007
- [51] Srivastava H M and Saigo M, Multiplication of fractional calculus operators and boundary value problems involving the eulerdarboux equation, J. Math. Anal. Appl. 121 (1987) 325-369[Crossref] Zbl0875.35015
- [52] Srivastava H M, Tomovski LZ, Fractional claculus with an integral operator containing generalized Mittag-Leffler function in the kernel, Appl. Math. Comput. 211(1) (2009) 198-210[Crossref] Zbl05562749
- [53] Tarasov V E, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media (2010) (Beijing: Springer, Heidelberg; Higher Education Press)
- [54] Tenreiro Machado J A, Kiryakova V, Mainardi F, A poster about the old history of fractional calculus, Fract. Calc. Appl. Anal. 13 (4)(2010) 447-454 Zbl1222.26015
- [55] Tenreiro Machado J A, Kiryakova V, Mainardi F, A poster about the recent history of fractional calculus, Fract. Calc. Appl. Anal. 13(3)(2010) 329-334 Zbl1221.26013
- [56] Tenreiro Machado J A, Kiryakova V, Mainardi F, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simulat. 16(3) (2011) 1140-1153; available online at http://dx.doi.org/10.1016/j.cnsns.2010.05.027 [Crossref] Zbl1221.26002
- [57] Uchaikin V V, Fractional derivatives for physicists and engineers. Vol. I. Background and theory(2013) (Beijing: Springer, Berlin - Higher Education Press)
- [58] Uchaikin V V, Fractional derivatives for physicists and engineers, Vol. II Applications(2013) (Beijing: Springer, Berlin - Higher Education Press)
- [59] Wiman A, Über den Fundamentalsatz in der Theorie der Funktionen E .x/, Acta Math. 29(1905) 191-201
- [60] Zaslavsky G M, Hamiltonian Chaos and Fractional Dynamics (2005) (Oxford: Oxford University Press) Zbl1083.37002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.