Existence and relaxation results for nonlinear second order evolution inclusions

Stanisław Migórski

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (1995)

  • Volume: 15, Issue: 2, page 129-148
  • ISSN: 1509-9407

Abstract

top
In this paper we study nonlinear evolution inclusions associated with second order equations defined on an evolution triple. We prove two existence theorems for the cases where the orientor field is convex valued and nonconvex valued, respectively. We show that when the orientor field is Lipschitzean, then the set of solutions of the nonconvex problem is dense in the set of solutions of the convexified problem.

How to cite

top

Stanisław Migórski. "Existence and relaxation results for nonlinear second order evolution inclusions." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 15.2 (1995): 129-148. <http://eudml.org/doc/275936>.

@article{StanisławMigórski1995,
abstract = {In this paper we study nonlinear evolution inclusions associated with second order equations defined on an evolution triple. We prove two existence theorems for the cases where the orientor field is convex valued and nonconvex valued, respectively. We show that when the orientor field is Lipschitzean, then the set of solutions of the nonconvex problem is dense in the set of solutions of the convexified problem.},
author = {Stanisław Migórski},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {differential inclusion; relaxation; multifunction; gelfand triple; compact embedding; evolution inclusion; existence; second order differential inclusion; convexified inclusion},
language = {eng},
number = {2},
pages = {129-148},
title = {Existence and relaxation results for nonlinear second order evolution inclusions},
url = {http://eudml.org/doc/275936},
volume = {15},
year = {1995},
}

TY - JOUR
AU - Stanisław Migórski
TI - Existence and relaxation results for nonlinear second order evolution inclusions
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 1995
VL - 15
IS - 2
SP - 129
EP - 148
AB - In this paper we study nonlinear evolution inclusions associated with second order equations defined on an evolution triple. We prove two existence theorems for the cases where the orientor field is convex valued and nonconvex valued, respectively. We show that when the orientor field is Lipschitzean, then the set of solutions of the nonconvex problem is dense in the set of solutions of the convexified problem.
LA - eng
KW - differential inclusion; relaxation; multifunction; gelfand triple; compact embedding; evolution inclusion; existence; second order differential inclusion; convexified inclusion
UR - http://eudml.org/doc/275936
ER -

References

top
  1. [1] N.U. Ahmed, Existence of optimal controls for a class of systems governed by differential inclusions in Banach spaces, J. Optimization Theory and Appl. 50 (2) (1986), 213-237. Zbl0577.49025
  2. [2] N.U. Ahmed, Optimal relaxed controls for nonlinear infinite dimensional stochastic differential inclusions, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, Inc., N. H. Pavel, Editor, New York, Basel, Hong Kong 160 (1994), 1-19. 
  3. [3] N.U. Ahmed and S. Kerbal, Optimal control of nonlinear second order evolution equations, J. Applied Math. and Stochastic Anal. 6 (1993), 123-136. 
  4. [4] N.U. Ahmed and K.L.Teo, Optimal Control of Distributed Parameter Systems, North Holland, New York 1981. Zbl0472.49001
  5. [5] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, Tokyo 1984. Zbl0538.34007
  6. [6] V.Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, The Netherlands 1976. Zbl0328.47035
  7. [7] H. Brezis, Opérateurs maximaux monotones et semi-groups de contractions dans les espaces de Hilbert, North-Holland, Amsterdam 1973. Zbl0252.47055
  8. [8] H.O. Fattorini, Existence theory and the maximum principle for relaxed infinite-dimensional optimal control problems, SIAM J. Control and Optimization 32 (2) (1994), 311-331. Zbl0796.93112
  9. [9] A.F. Filipov, Classical solutions of differential equations with multivalued right hand side, SIAM J. Control 5 (1967), 609-621. 
  10. [10] A. Fryszkowski, Continuous selections for nonconvex multivalued maps, Studia Math. 76 (1983), 163-174. Zbl0534.28003
  11. [11] S. Hu, V. Lakshmikantham and N.S. Papageorgiou, On the solution set of nonlinear evolution inclusions, Dynamics Systems and Appl. 1 (1992), 71-82. Zbl0755.34057
  12. [12] K. Kuratowski, Topology, Academic Press N.Y. and PWN-Polish Scientific Publishers, Vol. I, Warszawa 1966. 
  13. [13] J.L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Paris 1969. Zbl0189.40603
  14. [14] J.L. Lions and E. Magenes, Problémes aux limites non homogénes et applications, Dunod, Paris 1 (1968). Zbl0165.10801
  15. [15] S. Migórski, A counterexample to a compact embedding theorem for functions with values in a Hilbert space, Proc. Amer. Math. Soc. 123 (8) (1995), 2447-2449. Zbl0851.46026
  16. [16] S. Migórski, Existence and relaxation results for nonlinear evolution inclusions revisited, J. Applied Math. and Stochastic Anal. 8 (2) (1995), 143-149. Zbl0870.34061
  17. [17] E.V. Nagy, A theorem on compact embedding for functions with values in an infinite dimensional Hilbert space, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 22-23 (1979-80), 243-245. 
  18. [18] N.S. Papageorgiou, Convergence theorems for Banach space valued integrable multifunctions, Intern. J. Math. and Math. Sci. 10 (1987), 433-442. Zbl0619.28009
  19. [19] N.S. Papageorgiou, A relaxation theorem for differential inclusions in Banach spaces, Tohoku Math. Journ. 39 (1987), 505-517. Zbl0647.34011
  20. [20] N.S. Papageorgiou, Measurable multifunctions and their applications to convex integral functionals, Internat. J. Math. and Math. Sci. 12 (1989), 175-192. Zbl0659.28008
  21. [21] N.S. Papageorgiou, Continuous dependence results for a class of evolution inclusions, Proc. of the Edinburgh Math. Soc. 35 (1992), 139-158. Zbl0758.34050
  22. [22] A. Pliś, Trajectories and quasitrajectories of an orientor field, Bull. Polish Acad. Sci. Math. 10 (1962), 529-531. 
  23. [23] J. Simon, Compact sets in the space L p ( 0 , T ; B ) , Ann. Mat. Pura Appl. (IV), Vol. CXLVI (1987), 65-96. Zbl0629.46031
  24. [24] A.A. Tolstonogov, Solutions of evolution inclusions, I, Sibirskii Matematicheskii Zhurnal 33 (1992), 161-174. Zbl0787.34052
  25. [25] D. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), 859-903. Zbl0407.28006
  26. [26] T. Ważewski, Sur une généralisation de la notion des solutions d'une équation au contingent, Bull. Polish Acad. Sci. Math. 10 (1962), 11-15. Zbl0104.30404
  27. [27] J. Wloka, Partial differential equations, Cambridge University Press 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.