Periodic solutions of evolution problem associated with moving convex sets

Charles Castaing; Manuel D.P. Monteiro Marques

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (1995)

  • Volume: 15, Issue: 2, page 99-127
  • ISSN: 1509-9407

Abstract

top
This paper is concerned with periodic solutions for perturbations of the sweeping process introduced by J.J. Moreau in 1971. The perturbed equation has the form - D u N C ( t ) ( u ( t ) ) + f ( t , u ( t ) ) where C is a T-periodic multifunction from [0,T] into the set of nonempty convex weakly compact subsets of a separable Hilbert space H, N C ( t ) ( u ( t ) ) is the normal cone of C(t) at u(t), f:[0,T] × H∪H is a Carathéodory function and Du is the differential measure of the periodic BV solution u. Several existence results of periodic solutions for this differential inclusion are stated under various assumptions on the moving convex set C(t) and the perturbation f.

How to cite

top

Charles Castaing, and Manuel D.P. Monteiro Marques. "Periodic solutions of evolution problem associated with moving convex sets." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 15.2 (1995): 99-127. <http://eudml.org/doc/275954>.

@article{CharlesCastaing1995,
abstract = {This paper is concerned with periodic solutions for perturbations of the sweeping process introduced by J.J. Moreau in 1971. The perturbed equation has the form $-Du ∈ N_\{C(t)\}(u(t)) + f(t,u(t))$ where C is a T-periodic multifunction from [0,T] into the set of nonempty convex weakly compact subsets of a separable Hilbert space H, $N_\{C(t)\}(u(t))$ is the normal cone of C(t) at u(t), f:[0,T] × H∪H is a Carathéodory function and Du is the differential measure of the periodic BV solution u. Several existence results of periodic solutions for this differential inclusion are stated under various assumptions on the moving convex set C(t) and the perturbation f.},
author = {Charles Castaing, Manuel D.P. Monteiro Marques},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {evolution problem; periodic solution; sweeping process; perturbation; Lipschitzean; absolutely continuous; BV solution; multifunctions; subdifferentials; moving convex sets},
language = {eng},
number = {2},
pages = {99-127},
title = {Periodic solutions of evolution problem associated with moving convex sets},
url = {http://eudml.org/doc/275954},
volume = {15},
year = {1995},
}

TY - JOUR
AU - Charles Castaing
AU - Manuel D.P. Monteiro Marques
TI - Periodic solutions of evolution problem associated with moving convex sets
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 1995
VL - 15
IS - 2
SP - 99
EP - 127
AB - This paper is concerned with periodic solutions for perturbations of the sweeping process introduced by J.J. Moreau in 1971. The perturbed equation has the form $-Du ∈ N_{C(t)}(u(t)) + f(t,u(t))$ where C is a T-periodic multifunction from [0,T] into the set of nonempty convex weakly compact subsets of a separable Hilbert space H, $N_{C(t)}(u(t))$ is the normal cone of C(t) at u(t), f:[0,T] × H∪H is a Carathéodory function and Du is the differential measure of the periodic BV solution u. Several existence results of periodic solutions for this differential inclusion are stated under various assumptions on the moving convex set C(t) and the perturbation f.
LA - eng
KW - evolution problem; periodic solution; sweeping process; perturbation; Lipschitzean; absolutely continuous; BV solution; multifunctions; subdifferentials; moving convex sets
UR - http://eudml.org/doc/275954
ER -

References

top
  1. [1] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei, 1976. Zbl0328.47035
  2. [2] R.I. Becker, Periodic solutions of semilinear equations of evolutions of compact type, J. Math. Anal. Appl. 82 (1981), 33-48. Zbl0465.34014
  3. [3] C. Benassi and A. Gavioli, Approximation from the exterior of a multifunction with connected values defined on an interval, Atti Sem. Mat. Fis. Modena XLII (1994), 237-252. Zbl0873.54021
  4. [4] H. Brezis, Opérateurs maximaux monotones, North-Holland, Amsterdam 1973. 
  5. [5] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin 1977. 
  6. [6] C. Castaing, Truong Xuan Duc Ha and M. Valadier, Evolution equations governed by the sweeping process, Set-Valued Analysis 1 (1993), 109-119. Zbl0813.34018
  7. [7] C. Castaing and V. Jalby, Integral functionals on the space of vector measures. Applications to the sweeping process, Preprint, Université Montpellier II (1993), 29 pages. Zbl0837.46019
  8. [8] C. Castaing and V. Jalby, Epiconvergence of integral functionals on the space of vector measures, C.R. Acad. Sci. Paris 319 (1994), 669-674. Zbl0821.49014
  9. [9] A. Gamal, Perturbations semicontinues supérieurement de certaines équations d'évolution, Sém. Anal. Convexe, Montpellier, (1981), Exposé 14 (15 pages). 
  10. [10] A. Gavioli, Approximation from the exterior of a multifunction and its application to the sweeping process, J. Diff. Equations 92 (1991), 373-383. Zbl0744.41018
  11. [11] A. Haraux, Opérateurs maximaux monotones et oscillations forcées non linéaires, These, Université Pierre et Marie Curie, Paris 6 Juin 1978. 
  12. [12] N. Hirano, Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces, Proc. Amer. Math. Soc. 120 (1994), 185-192. Zbl0795.34051
  13. [13] M.D.P.M. Marques, Perturbations convexes semicontinues supérieurement des problemes d'évolution dans les espaces de Hilbert, Sém. Anal. Convexe, Montpellier (1984), Exposé 2 (23 pages). 
  14. [14] M.D.P.M. Marques, Differential inclusions in nonsmooth mechanical problems shocks and dry friction, Birkhäuser Verlag, 1993. Zbl0802.73003
  15. [15] S. Maury, Un probleme de frottement équivalent a un probleme de poursuite; étude asymptotique, Sém. Anal. Convexe, Montpellier (1973), Exposé 8 (18 pages). Zbl0362.70005
  16. [16] J.J. Moreau, Sur les mesures différentielles de fonctions vectorielles et certains problemes d'évolution, C.R. Acad. Sci. Sci. Paris 282 (1976), 837-840. Zbl0329.34050
  17. [17] J.J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space, J. Diff. Equations 26 (1977), 347-374. Zbl0356.34067
  18. [18] J.C. Péralba, Equations d'évolution dans un espace de Hilbert associées a des opérateurs sous-différentiels, Thése, Université Montpellier II (1973), (96 pages). 
  19. [19] J.C. Péralba, Equations d'évolution dans un espace de Hilbert associées a des opérateurs sous-différentiels, C.R. Acad. Sci. Paris 275 (1972), 93-96. Zbl0238.35018
  20. [20] M. Valadier, Applications des mesures de Young aux suites uniformément intégrables dans un espace de Banach, Sém. Anal. Convexe, Montpellier (1990), Exposé 3 (14 pages). 
  21. [21] M. Valadier, Lipschitz approximation of the sweeping process (Moreau process), J. Diff. Equations 88 (1990), 248-264. Zbl0716.34059
  22. [22] I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc. 109 (1990), 653-661. Zbl0701.34074

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.