Module Connes amenability of hypergroup measure algebras
Open Mathematics (2015)
- Volume: 13, Issue: 1, page 169-182
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMassoud Amini. "Module Connes amenability of hypergroup measure algebras." Open Mathematics 13.1 (2015): 169-182. <http://eudml.org/doc/275955>.
@article{MassoudAmini2015,
abstract = {We define the concept of module Connes amenability for dual Banach algebras which are also Banach modules with a compatible action. We distinguish a closed subhypergroup K0 of a locally compact measured hypergroup K, and show that, under different actions, amenability of K, M.K0/-module Connes amenability of M.K/, and existence of a normal M.K0/-module virtual diagonal are related.},
author = {Massoud Amini},
journal = {Open Mathematics},
keywords = {Hypergroup; Module Connes amenability; Normal module virtual diagonal; amenability; Connes-amenability; dual multiplier algebra; normal virtual diagonal},
language = {eng},
number = {1},
pages = {169-182},
title = {Module Connes amenability of hypergroup measure algebras},
url = {http://eudml.org/doc/275955},
volume = {13},
year = {2015},
}
TY - JOUR
AU - Massoud Amini
TI - Module Connes amenability of hypergroup measure algebras
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - 169
EP - 182
AB - We define the concept of module Connes amenability for dual Banach algebras which are also Banach modules with a compatible action. We distinguish a closed subhypergroup K0 of a locally compact measured hypergroup K, and show that, under different actions, amenability of K, M.K0/-module Connes amenability of M.K/, and existence of a normal M.K0/-module virtual diagonal are related.
LA - eng
KW - Hypergroup; Module Connes amenability; Normal module virtual diagonal; amenability; Connes-amenability; dual multiplier algebra; normal virtual diagonal
UR - http://eudml.org/doc/275955
ER -
References
top- [1] Runde, V., Amenability for dual Banach algebras, Studia Math., 2001, 148, 47-66. Zbl1003.46028
- [2] Runde, V., Connes-amenability and normal, virtual diagonals for measure algebras, J. London Math. Soc., 2003, 67, 643-656. [Crossref] Zbl1040.22002
- [3] Runde, V., Connes-amenability and normal, virtual diagonals for measure algebras II, Bull. Austral. Math. Soc., 2003, 68, 325-328. [Crossref] Zbl1042.22001
- [4] Runde, V., Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule, Math. Scand., 2004, 95, 124-144. Zbl1087.46035
- [5] Johnson, B.E., Kadison, R.V., Ringrose, J., Cohomology of operator algebras III, Bull. Soc. Math. France, 1972, 100, 73-79. Zbl0234.46066
- [6] Jewett, R.I., Spaces with an abstract convolution of measures, Advances in Math., 1975, 18, 1-110. Zbl0325.42017
- [7] Bloom, W.R., Heyer, H., Harmonic Analysis of Probability Measures on Hypergroups, Walter de Gruyter, Berlin, 1995. Zbl0828.43005
- [8] Amini, M., Module amenability for semigroup algebras, Semigroup Forum, 2004, 69, 243-254. Zbl1059.43001
- [9] M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Func. Anal., 1967, 1, 443-491. Zbl0181.41303
- [10] Daws, M., Dual Banach algebras: representations and injectivity, Studia Math., 2007, 178(3), 231-275. Zbl1115.46038
- [11] Ryan, R., Introduction to Tensor Products of Banach Spaces, Springer-Verlag, London, 2002.
- [12] Corach, G., Galé, J. E., Averaging with virtual diagonals and geometry of representations. In: Banach algebras ’97, Walter de Grutyer, Berlin, 87-100, 1998. Zbl0920.46038
- [13] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 1951, 71, 152-182. Zbl0043.37902
- [14] T. H. Koornwinder, Alan L. Schwartz, Product formulas and associated hypergroups for orthogonal polynomials on the simplex and on a parabolic biangle, Constr. Approx., 1997, 13, 537-567. [Crossref] Zbl0937.33009
- [15] Grothendieck, A., Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math., 1953, 74, 168-186. [Crossref] Zbl0046.11702
- [16] M. Skantharajah, Amenable hypergroups, Illinois J. Math., 1992, 36(1), 15-46. Zbl0755.43003
- [17] Johnson, B.E., Separate continuity and measurability, Proc. Amer. Math. Soc., 1969, 20, 420-422. [Crossref] Zbl0181.14502
- [18] Lasser, R., Amenability and weak amenability of `1-algebras of polynomial hypergroups, Studia Math., 2007, 182, 183-196. Zbl1126.43003
- [19] Lasser, R., Various amenability properties of the L1-algebra of polynomial hypergroups and applications, J. Comput. Appl. Math., 2009, 233, 786-792. [WoS] Zbl1182.43008
- [20] Amini, M., Bodaghi, A., Ebrahimi Bagha, D., Module amenability of the second dual and module topological center of semigroup algebras, Semigroup Forum, 2010, 80, 302-312. [Crossref][WoS] Zbl1200.43001
- [21] Runde V., Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer-Verlag, Berlin, 2002. Zbl0999.46022
- [22] Doran, R.S., Wichman, J., Approximate Identities and Factorization in Banach Modules, Lecture Notes in Mathematics 768, Springer-Verlag, Berlin, 1979.
- [23] Lasser, R., Orthogonal polynomials and hypergroups, Rend. Mat., 1983, 3, 185-209. Zbl0538.33010
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.