Module Connes amenability of hypergroup measure algebras

Massoud Amini

Open Mathematics (2015)

  • Volume: 13, Issue: 1, page 169-182
  • ISSN: 2391-5455

Abstract

top
We define the concept of module Connes amenability for dual Banach algebras which are also Banach modules with a compatible action. We distinguish a closed subhypergroup K0 of a locally compact measured hypergroup K, and show that, under different actions, amenability of K, M.K0/-module Connes amenability of M.K/, and existence of a normal M.K0/-module virtual diagonal are related.

How to cite

top

Massoud Amini. "Module Connes amenability of hypergroup measure algebras." Open Mathematics 13.1 (2015): 169-182. <http://eudml.org/doc/275955>.

@article{MassoudAmini2015,
abstract = {We define the concept of module Connes amenability for dual Banach algebras which are also Banach modules with a compatible action. We distinguish a closed subhypergroup K0 of a locally compact measured hypergroup K, and show that, under different actions, amenability of K, M.K0/-module Connes amenability of M.K/, and existence of a normal M.K0/-module virtual diagonal are related.},
author = {Massoud Amini},
journal = {Open Mathematics},
keywords = {Hypergroup; Module Connes amenability; Normal module virtual diagonal; amenability; Connes-amenability; dual multiplier algebra; normal virtual diagonal},
language = {eng},
number = {1},
pages = {169-182},
title = {Module Connes amenability of hypergroup measure algebras},
url = {http://eudml.org/doc/275955},
volume = {13},
year = {2015},
}

TY - JOUR
AU - Massoud Amini
TI - Module Connes amenability of hypergroup measure algebras
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - 169
EP - 182
AB - We define the concept of module Connes amenability for dual Banach algebras which are also Banach modules with a compatible action. We distinguish a closed subhypergroup K0 of a locally compact measured hypergroup K, and show that, under different actions, amenability of K, M.K0/-module Connes amenability of M.K/, and existence of a normal M.K0/-module virtual diagonal are related.
LA - eng
KW - Hypergroup; Module Connes amenability; Normal module virtual diagonal; amenability; Connes-amenability; dual multiplier algebra; normal virtual diagonal
UR - http://eudml.org/doc/275955
ER -

References

top
  1. [1] Runde, V., Amenability for dual Banach algebras, Studia Math., 2001, 148, 47-66. Zbl1003.46028
  2. [2] Runde, V., Connes-amenability and normal, virtual diagonals for measure algebras, J. London Math. Soc., 2003, 67, 643-656. [Crossref] Zbl1040.22002
  3. [3] Runde, V., Connes-amenability and normal, virtual diagonals for measure algebras II, Bull. Austral. Math. Soc., 2003, 68, 325-328. [Crossref] Zbl1042.22001
  4. [4] Runde, V., Dual Banach algebras: Connes-amenability, normal, virtual diagonals, and injectivity of the predual bimodule, Math. Scand., 2004, 95, 124-144. Zbl1087.46035
  5. [5] Johnson, B.E., Kadison, R.V., Ringrose, J., Cohomology of operator algebras III, Bull. Soc. Math. France, 1972, 100, 73-79. Zbl0234.46066
  6. [6] Jewett, R.I., Spaces with an abstract convolution of measures, Advances in Math., 1975, 18, 1-110. Zbl0325.42017
  7. [7] Bloom, W.R., Heyer, H., Harmonic Analysis of Probability Measures on Hypergroups, Walter de Gruyter, Berlin, 1995. Zbl0828.43005
  8. [8] Amini, M., Module amenability for semigroup algebras, Semigroup Forum, 2004, 69, 243-254. Zbl1059.43001
  9. [9] M. A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Func. Anal., 1967, 1, 443-491. Zbl0181.41303
  10. [10] Daws, M., Dual Banach algebras: representations and injectivity, Studia Math., 2007, 178(3), 231-275. Zbl1115.46038
  11. [11] Ryan, R., Introduction to Tensor Products of Banach Spaces, Springer-Verlag, London, 2002. 
  12. [12] Corach, G., Galé, J. E., Averaging with virtual diagonals and geometry of representations. In: Banach algebras ’97, Walter de Grutyer, Berlin, 87-100, 1998. Zbl0920.46038
  13. [13] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc., 1951, 71, 152-182. Zbl0043.37902
  14. [14] T. H. Koornwinder, Alan L. Schwartz, Product formulas and associated hypergroups for orthogonal polynomials on the simplex and on a parabolic biangle, Constr. Approx., 1997, 13, 537-567. [Crossref] Zbl0937.33009
  15. [15] Grothendieck, A., Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math., 1953, 74, 168-186. [Crossref] Zbl0046.11702
  16. [16] M. Skantharajah, Amenable hypergroups, Illinois J. Math., 1992, 36(1), 15-46. Zbl0755.43003
  17. [17] Johnson, B.E., Separate continuity and measurability, Proc. Amer. Math. Soc., 1969, 20, 420-422. [Crossref] Zbl0181.14502
  18. [18] Lasser, R., Amenability and weak amenability of `1-algebras of polynomial hypergroups, Studia Math., 2007, 182, 183-196. Zbl1126.43003
  19. [19] Lasser, R., Various amenability properties of the L1-algebra of polynomial hypergroups and applications, J. Comput. Appl. Math., 2009, 233, 786-792. [WoS] Zbl1182.43008
  20. [20] Amini, M., Bodaghi, A., Ebrahimi Bagha, D., Module amenability of the second dual and module topological center of semigroup algebras, Semigroup Forum, 2010, 80, 302-312. [Crossref][WoS] Zbl1200.43001
  21. [21] Runde V., Lectures on Amenability, Lecture Notes in Mathematics 1774, Springer-Verlag, Berlin, 2002. Zbl0999.46022
  22. [22] Doran, R.S., Wichman, J., Approximate Identities and Factorization in Banach Modules, Lecture Notes in Mathematics 768, Springer-Verlag, Berlin, 1979. 
  23. [23] Lasser, R., Orthogonal polynomials and hypergroups, Rend. Mat., 1983, 3, 185-209. Zbl0538.33010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.