Some extensions of a certain integral transform to a quotient space of generalized functions

Shrideh K.Q. Al-Omari; Jafar F. Al-Omari

Open Mathematics (2015)

  • Volume: 13, Issue: 1
  • ISSN: 2391-5455

Abstract

top
In this paper, we establish certain spaces of generalized functions for a class of ɛs2,1 transforms. We give the definition and derive certain properties of the extended ɛs2,1 transform in a context of Boehmian spaces. The extended ɛs2,1 transform is therefore well defined, linear and consistent with the classical ɛs2,1 transforms. Certain results are also established in some detail.

How to cite

top

Shrideh K.Q. Al-Omari, and Jafar F. Al-Omari. "Some extensions of a certain integral transform to a quotient space of generalized functions." Open Mathematics 13.1 (2015): null. <http://eudml.org/doc/275968>.

@article{ShridehK2015,
abstract = {In this paper, we establish certain spaces of generalized functions for a class of ɛs2,1 transforms. We give the definition and derive certain properties of the extended ɛs2,1 transform in a context of Boehmian spaces. The extended ɛs2,1 transform is therefore well defined, linear and consistent with the classical ɛs2,1 transforms. Certain results are also established in some detail.},
author = {Shrideh K.Q. Al-Omari, Jafar F. Al-Omari},
journal = {Open Mathematics},
keywords = {ɛs2,1 transform; Generalized function; Lebesgue space; Boehmian space},
language = {eng},
number = {1},
pages = {null},
title = {Some extensions of a certain integral transform to a quotient space of generalized functions},
url = {http://eudml.org/doc/275968},
volume = {13},
year = {2015},
}

TY - JOUR
AU - Shrideh K.Q. Al-Omari
AU - Jafar F. Al-Omari
TI - Some extensions of a certain integral transform to a quotient space of generalized functions
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - null
AB - In this paper, we establish certain spaces of generalized functions for a class of ɛs2,1 transforms. We give the definition and derive certain properties of the extended ɛs2,1 transform in a context of Boehmian spaces. The extended ɛs2,1 transform is therefore well defined, linear and consistent with the classical ɛs2,1 transforms. Certain results are also established in some detail.
LA - eng
KW - ɛs2,1 transform; Generalized function; Lebesgue space; Boehmian space
UR - http://eudml.org/doc/275968
ER -

References

top
  1. [1] Al-Omari, S. K. Q., Hartley transforms on certain space of generalized functions, Georg. Math. J., 2013; 20(3), 415-426 Zbl1277.42003
  2. [2] Al-Omari, S. K. Q., Kilicman, A., Note on Boehmians for class of optical Fresnel wavelet transforms, J. Funct. Spac. Applic., 2012, Article ID 405368, doi:10.1155/2012/405368, 1-13 [Crossref] Zbl1266.46030
  3. [3] Al-Omari, S. K. Q., Kilicman, A., On generalized Hartley-Hilbert and Fourier-Hilbert transforms, Adva. Diff. Equ., 2012, 2012:232 doi:10.1186/1687-1847-2012-232, 1-12 [Crossref] 
  4. [4] Boehme, T. K., The support of Mikusinski operators, Trans. Amer. Math. Soc., 1973; 176, 319-334 Zbl0268.44005
  5. [5] Al-Omari, S. K. Q., Kilicman, A., On diffraction Fresnel transforms for Boehmians, Abstr. Appli. Anal., 2011, Article ID 712746. 1-13 Zbl1243.46032
  6. [6] Mikusinski, P., Zayed, A., The Radon transform of Boehmians, Amer. Math. Soc., 1993; 118.2/, 561-570 Zbl0774.44004
  7. [7] Roopkumar, R., Generalized Radon transform, Rocky Mount. J. Math., 2006; 36(4), 1375-1390 Zbl1135.46020
  8. [8] Brown, D., Dernek, N., Yürekli, O., Identities for the E2;1-transform and their applications, Appli. Math. Compu. 2007; 187, 1557-1566 Zbl1228.44001
  9. [9] Zemanian, A. H., Distribution theory and transform analysis, Dover Publications, Inc., New York. First Published by McGraw-Hill, Inc. New York, 1965 Zbl0127.07201
  10. [10] Karunakaran, V., Roopkumar, R., Operational calculus and Fourier transform on Boehmians, Colloq. Math., 2005; 102, 21-32 Zbl1079.46029
  11. [11] Karunakaran, V., Vembu, R., Hilbert transform on periodic Boehmians, Houst. J. Math., 2003, 29 , 439-454 Zbl1040.44001
  12. [12] Karunakaran, V., Vembu, R., On point values of Boehmians, Rocky Moun. J. Math., 2005, 35, 181-193 Zbl1088.44002
  13. [13] Mikusinski, P., Convergence of Boehmians, Japan. J. Math., 1983, 9, 159-179 Zbl0524.44005
  14. [14] Mikusinski, P., Fourier transform for integrable Boehmians, Rocky Mountain J. Math., 1987, 17, 577-582 Zbl0629.44005
  15. [15] Mikusinski, P., Boehmians and generalized functions, Acta Math. Hungar., 1988, 51, 271-281. Zbl0652.44005
  16. [16] Mikusinski, P., Tempered Boehmians and ultra distributions, Proc. Amer. Math. Soc., 1995, 123, 813-817 Zbl0821.46053
  17. [17] Mikusinski, P., On flexibility of Boehmians, Integ. Trans. Spec. Funct. 4, 1996, 141-146 [Crossref] Zbl0863.44004
  18. [18] Mikusinski, P., Boehmians and pseudoquotients, Appl. Math. Inf. Sci., 2011, 5, 192-204 Zbl1231.44003
  19. [19] Mikusinski, J., Mikusinski, P., Quotients de suites et leurs applications dans l’anlyse fonctionnelle, C. R. Acad. Funct., 1994, 2, 219-230 Zbl0495.44006
  20. [20] Nemzer, D., Periodic Boehmians, Int. J. Math. Math. Sci., 1989, 12, 685-692 [Crossref] Zbl0736.46041
  21. [21] Al-Omari, S. K. Q., On a class of generalized Meijer-Laplace transforms of Fox function type kernels and their extension to a class of Boehmians, Bull. kore. Math. Soc., 2015, In Press. 
  22. [22] Al-Omari, S. K. Q., Agarwal, P., Some general properties of a fractional Sumudu transform in the class of Boehmians, Kuwait J. Scie. Engin., 2015, In Press. 
  23. [23] Kananthai, A., The distribution solutions of ordinary differential equation with polynomial coefficients, Southeast Asian Bulle. Math., 2001, 25, 129-134 Zbl1009.46024
  24. [24] Loonker, D., Banerji, P. K., Solution of integral equations by generalized wavelet transform, Bol. Soc. Paran. Mat., 2015, 33.2/, 89-94 [Crossref] 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.