Third-order differential subordination and superordination involving a fractional operator
Rabha W. Ibrahim; Muhammad Zaini Ahmad; Hiba F. Al-Janaby
Open Mathematics (2015)
- Volume: 13, Issue: 1
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Alexander J. W., Functions which map the interior of the unit circle upon simple regions, Ann. of Math., 1915, 17, 12–22. [Crossref] Zbl45.0672.02
- [2] Libera R. J., Some classes of regular univalent functions, Proc. Amer. Math. Soc., 1965, 16, 755–758. [Crossref] Zbl0158.07702
- [3] Bernardi S. D., Convex and starlike univalent functions, Trans. Amer. Math. Soc., 1969, 135, 429–446. Zbl0172.09703
- [4] Miller S. S., Mocanu P. T., Reade M. O., Starlike integral operators, Pacific J. Math., 1978, 79, 157–168. Zbl0398.30007
- [5] Miller S. S., Mocanu P. T., Classes of univalent integral operators, J. Math. Anal. Appl., 1991, 157, 147–165. [Crossref] Zbl0729.30011
- [6] Singh R., On Bazilevic functions, Proc. Amer. Math. Soc., 1973, 18 261–271. Zbl0262.30014
- [7] Pascu N. N., Pescar V., On integral operators of Kim-Merkes and Pfaltz-graff, Mathematica (Cluj), 1990, 2, 185–192. Zbl0761.30011
- [8] Pescar V., Breaz D., Some integral operators and their univalence, Acta Univ. Apulensis Math., Inform. 2008, 15, 147–152. Zbl1199.30094
- [9] Breaz D., Breaz N., Srivastava H. M., An extension of the univalent condition for a family of integral operators, Appl. Math. Lett., (2009), 22, 41–44. [WoS][Crossref] Zbl1163.30304
- [10] Breaz D., Darus M., Breaz N., Recent Studies on Univalent Integral Operators, Alba Iulia: Aeternitas, 2010. Zbl1207.41012
- [11] Darus M., Ibrahim R. W., On subclasses of uniformly Bazilevic type functions involving generalized differential and integral operators, FJMS, 2009, 33, 401–411. Zbl1168.30306
- [12] Darus M., Ibrahim R. W., On inclusion properties of generalized integral operator involving Noor integral, FJMS, 2009, 33, 309–321. Zbl1168.30305
- [13] Hernandez R., Prescribing the preschwarzian in several complex variables, Annales Academiae Scientiarum Fennicae Mathematica, 2011, 36, 331–340. [Crossref][WoS] Zbl1227.32021
- [14] Ong K. W., Tan S. L., Tu Y. E., Integral operators and univalent functions, Tamkang Journal of Mathematics, 2012, 43(2), 215–221. Zbl1255.30029
- [15] Goluzin G. M., On the majorization principle in function theory (Russian). Dokl. Akad. Nauk. SSSR, 1953, 42, 647–650.
- [16] Suffridge T. J., Some remarks on convex maps of the unit disk. Duke Math. J., 1970, 37, 775–777. Zbl0206.36202
- [17] Robinson R. M., Univalent majorants, Trans. Amer. Math. Soc., 1947, 61, 1–35. [Crossref]
- [18] Hallenbeck D. J., Ruscheweyh S., Subordination by convex functions, Proc. Amer. Math. Soc., 1975, 52, 191–195. [Crossref] Zbl0311.30010
- [19] Miller S.S., Mocanu P.T., Differential subordinations and univalent function, Michig. Math. J., 1981, 28, 157–171. [Crossref] Zbl0439.30015
- [20] Miller S.S., Mocanu P.T., Differential subordinations and inequalities in the complex plane, J. Diff. Eqn., 1987, 67, 199–211. Zbl0633.34005
- [21] Miller S.S., Mocanu P.T., The theory and applicatins of second-order differential subordinations, Studia Univ. Babes-Bolyai, math., 1989, 34, 3–33.
- [22] Miller S. S., Mocanu P. T., Differential Subordinations, Theory and applications, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.
- [23] Miller S. S., Mocanu P. T., Subordinants of differetial superordinations, Complex Var. Theory Appl., 2003, 48, 815–826. Zbl1039.30011
- [24] Bulboac Ma T., Differential subordinations and superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
- [25] Baricz A., Deniz E., Caglar M., Orhan H., Differential subordinations involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc., DOI: 10.1007/s40840-014-0079-8. [WoS][Crossref] Zbl1316.30010
- [26] Cho N. E., Bilboaca T., Srivastava H. M., A general family of integral operators and associated subordination and superordination properties of some special analytic function classes, Appl. Math. Comput., 2012, 219, 2278–2288. [WoS] Zbl1293.30027
- [27] Kuroki K., Srivastava H. M., Owa S., Some applications of the principle of differential, Electron. J. Math. Anal. Appl., 2013, 1 (50), 40–46.
- [28] Xu Q.-H., Xiao H.-G., Srivastava H. M., Some applications of differential subordination and the Dziok-Srivastava convolution operator, Appl. Math. Comput., 2014, 230, 496–508.
- [29] Ali R. M., Ravichandran V., Seenivasagan N., Differential subordination and superordination of analytic functions defined by the Dziok-Srivastava operator, J. Franklin Inst., 2010, 347, 1762–1781. [WoS] Zbl1204.30008
- [30] Ali R. M., Ravichandran V., Seenivasagan N., On Subordination and superordination of the multiplier transformation for meromorphic functions, Bull. Malays. Math. Sci. Soc., 2010, 33, 311–324. Zbl1189.30009
- [31] Ponnusamy S., Juneja O. P., Third-order differential inequalities in the complex plane, Current Topics in Analytic Function Theory, World Scientific, Singapore, London, 1992. Zbl0991.30012
- [32] Antonion J. A., Miller S. S., Third-order differential inequalities and subordinations in the complex plane, Complex Var. Theory Appl., 2011, 56, 439–454. Zbl1220.30035
- [33] Jeyaraman M. P., Suresh T. K., Third-order differential subordination of analysis functions, Acta Universitatis Apulensis, 2013, 35, 187–202. Zbl1340.30103
- [34] Tang H., Srivastiva H. M., Li S., Ma L., Third-order differential subordinations and superordination results for meromorphically multivalent functions associated with the Liu-Srivastava Operator, Abstract and Applied Analysis, 2014, 1–11. [WoS][Crossref]
- [35] Tang H., Deniz E., Third-order differential subordinations results for analytic functions involving the generalized Bessel functions, Acta Math. Sci., 2014, 6, 1707–1719. [WoS][Crossref] Zbl1340.30080
- [36] Tang H., Srivastiva H. M., Deniz E., Li S., Third-order differential superordination involving the generalized Bessel functions, Bull. Malays. Math. Sci. Soc., 2014, 1–22. [WoS]
- [37] Farzana H. A., Stephen B. A., Jeyaraman M. P., Third-order differential subordination of analytic function defined by functional derivative operator, Annals of the Alexandru Ioan Cuza University - Mathematics, 2014, 1–16.
- [38] B. C. Carlson and D. B. Shaffer,Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal., 1984, 15, 737–745. Zbl0567.30009
- [39] Machado J. T., Discrete-time fractional-order controllers, Fractional Calculus and Applied Analysis, 2001, 4, 47–66. Zbl1111.93307
- [40] Pu Y.-F., Zhou J.-L., Yuan X., Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement, Image Processing, IEEE Transactions on, 2010, 19, 491–511. [WoS]
- [41] Jalab H. A., Ibrahim R. W., Fractional Conway polynomials for image denoising with regularized fractional power parameters, J. Math. Imaging Vis., 2015, 51, 442–450. [Crossref][WoS] Zbl1331.94021
- [42] Jalab H A, Ibrahim R. W., Fractional Alexander polynomials for image denoising, Signal Processing, 2015, 107, 340–354.
- [43] Wu G.C., Baleanu D., Zeng S.D., Deng Z.G., Discrete fractional diffusion equation, Nonlinear Dynamics, 2015, 80, 1–6. Zbl06496111