Osgood type conditions for an m th-order differential equation
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (1998)
- Volume: 18, Issue: 1-2, page 45-55
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] V. A. Aleksandrov and N. S. Dairbekov, Remarks on the theorem of M. and S. Radulescu about an initial value problem for the differential equation , Rev. Roum. Math. Pure Appl. 37 (1992), 95-102. Zbl0757.34049
- [2] A. Cellina, On the existence of solutions of ordinary differential equations in Banach spaces, Funkcial. Ekvac. 14 (1972), 129-136. Zbl0271.34071
- [3] P. Hartman, Ordinary Differential Equations, New York - London - Sydney 1964. Zbl0125.32102
- [4] J. Januszewski and S. Szufla, On the Urysohn integral equation in locally convex spaces, Publ. Inst. Math. 51 (1992), 77-80. Zbl0776.45010
- [5] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), 985-999. Zbl0462.34041
- [6] B. N. Sadowskii, Limit - compact and condensing mappings, Russian Math. Surveys 27 (1972), 85-155.
- [7] S. Szufla, On the structure of solutions sets of differential and integral equations in Banach spaces, Ann. Polon. Math. 34 (1977), 165-177. Zbl0384.34038
- [8] S. Szufla, On the equation x' = f(t,x) in locally convex spaces, Math. Nachr. 118 (1984), 179-185. Zbl0569.34052
- [9] S. Szufla, On the differential equation in Banach spaces, Funkcial. Ekvac. 41 (1998), 101-105. Zbl1140.34400