Observability and controllability analysis for sandwich systems with backlash
Na Luo; Yonghong Tan; Ruili Dong
International Journal of Applied Mathematics and Computer Science (2015)
- Volume: 25, Issue: 4, page 803-814
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Balachandran, K. and Shanmugam, D. (2014). Controllability of nonlinear implicit fractional integrodifferential systems, International Journal of Applied Mathematics and Computer Science 24(4): 713-722, DOI: 10.2478/amcs-2014-0052. Zbl1309.93025
- Clarke, F.H. (1983). Optimization and Nonsmooth Analysis, John Wiley, New York, NY. Zbl0582.49001
- Dong, R., Tan, Y., Chen, H. and Xie, Y. (2012). Nonsmooth recursive identification of sandwich systems with backlash-like hysteresis, Journal of Applied Mathematics 2012: 1-16, ID 457601. Zbl1251.93131
- Herman, R. and Krener, A. (1977). Nonlinear controllability and observability, IEEE Transactions on Automatic Control 22(5): 728-740. Zbl0396.93015
- Isidori, A. (1989). Nonlinear Control Systems, Springer, London. Zbl0693.93046
- Jank, G. (2002). Controllability, observability and optimal control of continuous-time 2-D systems, International Journal of Applied Mathematics and Computer Science 12(2): 181-195. Zbl1014.93017
- Kalman, R., Falb, P. and Arbib, M. (1969). Topics in Mathematical System Theory, Mc Graw-Hill Company, New York, NY. Zbl0231.49001
- Karthikeyan, S., Balachandran, K. and Murugesan, S. (2015). Controllability of nonlinear stochastic systems with multiple time-varying delays in control, International Journal of Applied Mathematics and Computer Science 25(2): 207-215, DOI: 10.1515/amcs-2015-0015. Zbl1322.93020
- Klamka, J. (1975). On the global controllability of perturbed nonlinear systems, IEEE Transactions on Automatic Control 20(1): 170-172. Zbl0299.93007
- Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht. Zbl0732.93008
- Klamka, J. (2002). Controllability of nonlinear discrete systems, American Control Conference, Anchorage, AK, USA, pp. 4670-4671.
- Klamka, J. (2013a). Constrained controllability of second order dynamical systems with delay, Control and Cybernetics 42(1): 111-121. Zbl1318.93019
- Klamka, J. (2013b). Controllability of dynamical systems: A survey, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(2): 221-229.
- Klamka, J., Czornik, A. and Niezabitowski, M. (2013). Stability and controllability of switched systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(3): 547-554.
- Koplon, R. and Sontag, E. (1993). Linear systems with sign observations, SIAM Journal Control and Optimization 31(12): 1245-1266. Zbl0785.93020
- Mincheko, L. and Sirotko, S. (2002). Controllability of non-smooth discrete systems with delay, Optimization 51(1): 161-174. Zbl1031.93035
- Murphey, T. and Burdick, J. (2002). Nonsmooth controllability theory and an example, 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 370-376.
- Nordin, M. and Gutman, P.O. (2002). Controlling mechanical systems with backlash-a survey, Automatica 38(4): 1633-1649. Zbl1030.70013
- Qi, L. and Sun, J. (1993). A nonsmooth version of Newton's method, Mathematical Programming 58(3): 353-367. Zbl0780.90090
- Rockafellar, R.T. and Wets, R. J.B. (1998). Variational Analysis, Springer, Berlin. Zbl0888.49001
- Sontag, E. (1979). On the observability of polynomial systems, I: Finite-time problems, SIAM Journal of Control and Optimization 17(1): 139-151. Zbl0409.93013
- Sussmann, H. (1979). Single-input observability of continuous-time systems, Mathematical Systems Theory 12(3): 371-393. Zbl0422.93019
- van der Schaft, A.J. (1982). Observability and controllability for smooth nonlinear systems, SIAM Journal of Control and Optimization 20(3): 338-354. Zbl0482.93039
- Zhirabok, A. and Shumsky, A. (2012). An approach to the analysis of observability and controllability in nonlinear systems via linear methods, International Journal of Applied Mathematics and Computer Science 22(3): 507-522, DOI: 10.2478/v10006-012-0038-1. Zbl1302.93048