Unified Spectral Bounds on the Chromatic Number
Discussiones Mathematicae Graph Theory (2015)
- Volume: 35, Issue: 4, page 773-780
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. Bhatia, Matrix Analysis (Graduate Text in Mathematics, 169, Springer Verlag, New York, 1997). doi:10.1007/978-1-4612-0653-8[Crossref]
- [2] F.R.K. Chung, Spectral Graph Theory (CBMS Number 92, 1997). Zbl0867.05046
- [3] A.J. Hoffman, On eigenvalues and colourings of graphs, in: Graph Theory and its Applications, Academic Press, New York (1970) 79-91.
- [4] L. Yu. Kolotilina, Inequalities for the extreme eigenvalues of block-partitioned Hermitian matrices with applications to spectral graph theory, J. Math. Sci. 176 (2011) 44-56 (translation of the paper originally published in Russian in Zapiski Nauchnykh Seminarov POMI 382 (2010) 82-103). Zbl1291.15050
- [5] L.S. de Lima, C.S. Oliveira, N.M.M. de Abreu and V. Nikiforov, The smallest eigenvalue of the signless Laplacian, Linear Algebra Appl. 435 (2011) 2570-2584. doi:10.1016/j.laa.2011.03.059[WoS][Crossref] Zbl1222.05180
- [6] V. Nikiforov, Chromatic number and spectral radius, Linear Algebra Appl. 426 (2007) 810-814. doi:10.1016/j.laa.2007.06.005[WoS][Crossref] Zbl1125.05063
- [7] P. Wocjan and C. Elphick, New spectral bounds on the chromatic number encompassing all eigenvalues of the adjacency matrix, Electron. J. Combin. 20(3) (2013) P39. Zbl1295.05112