On Super Edge-Antimagicness of Subdivided Stars

A. Raheem; M. Javaid; A.Q. Baig

Discussiones Mathematicae Graph Theory (2015)

  • Volume: 35, Issue: 4, page 663-673
  • ISSN: 2083-5892

Abstract

top
Enomoto, Llado, Nakamigawa and Ringel (1998) defined the concept of a super (a, 0)-edge-antimagic total labeling and proposed the conjecture that every tree is a super (a, 0)-edge-antimagic total graph. In the support of this conjecture, the present paper deals with different results on super (a, d)-edge-antimagic total labeling of subdivided stars for d ∈ {0, 1, 2, 3}.

How to cite

top

A. Raheem, M. Javaid, and A.Q. Baig. "On Super Edge-Antimagicness of Subdivided Stars." Discussiones Mathematicae Graph Theory 35.4 (2015): 663-673. <http://eudml.org/doc/276022>.

@article{A2015,
abstract = {Enomoto, Llado, Nakamigawa and Ringel (1998) defined the concept of a super (a, 0)-edge-antimagic total labeling and proposed the conjecture that every tree is a super (a, 0)-edge-antimagic total graph. In the support of this conjecture, the present paper deals with different results on super (a, d)-edge-antimagic total labeling of subdivided stars for d ∈ \{0, 1, 2, 3\}.},
author = {A. Raheem, M. Javaid, A.Q. Baig},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {super (a; d)-EAT labeling; stars; subdivision of stars; super -EAT labeling},
language = {eng},
number = {4},
pages = {663-673},
title = {On Super Edge-Antimagicness of Subdivided Stars},
url = {http://eudml.org/doc/276022},
volume = {35},
year = {2015},
}

TY - JOUR
AU - A. Raheem
AU - M. Javaid
AU - A.Q. Baig
TI - On Super Edge-Antimagicness of Subdivided Stars
JO - Discussiones Mathematicae Graph Theory
PY - 2015
VL - 35
IS - 4
SP - 663
EP - 673
AB - Enomoto, Llado, Nakamigawa and Ringel (1998) defined the concept of a super (a, 0)-edge-antimagic total labeling and proposed the conjecture that every tree is a super (a, 0)-edge-antimagic total graph. In the support of this conjecture, the present paper deals with different results on super (a, d)-edge-antimagic total labeling of subdivided stars for d ∈ {0, 1, 2, 3}.
LA - eng
KW - super (a; d)-EAT labeling; stars; subdivision of stars; super -EAT labeling
UR - http://eudml.org/doc/276022
ER -

References

top
  1. [1] M. Bača, Y. Lin, M. Miller and M.Z. Youssef, Edge-antimagic graphs, Discrete Math. 307 (2007) 1232-1244. doi:10.1016/j.disc.2005.10.038[Crossref] 
  2. [2] M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Util. Math. 60 (2001) 229-239. Zbl1011.05056
  3. [3] M. Bača, Y. Lin and F.A. Muntaner-Batle, Super edge-antimagic labelings of the path-like trees, Util. Math. 73 (2007) 117-128. Zbl1140.05049
  4. [4] M. Bača and M. Miller, Super Edge-Antimagic Graphs (Brown Walker Press, Boca Raton, Florida USA, 2008). 
  5. [5] M. Bača, A. Semaničová-Fěnovčíková and M.K. Shafiq, A method to generate large classes of edge-antimagic trees, Util. Math. 86 (2011) 33-43. Zbl1264.05115
  6. [6] Dafik, M. Miller, J. Ryan and M. Bača, On super (a, d)-edge antimagic total labeling of disconnected graphs, Discrete Math. 309 (2009) 4909-4915. doi:10.1016/j.disc.2008.04.031[Crossref][WoS] Zbl1275.05048
  7. [7] H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998) 105-109. Zbl0918.05090
  8. [8] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math. 231 (2001) 153-168. doi:0.1016/S0012-365X(00)00314-9 Zbl0977.05120
  9. [9] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On super edge- magic graph, Ars Combin. 64 (2002) 81-95. Zbl1071.05568
  10. [10] Y. Fukuchi, A recursive theorem for super edge-magic labeling of trees, SUT J. Math. 36 (2000) 279-285. Zbl0977.05124
  11. [11] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 17 (2010). Zbl0953.05067
  12. [12] M. Javaid, M. Hussain, K. Ali and K.H. Dar, Super edge-magic total labeling on w-trees, Util. Math. 86 (2011) 183-191. Zbl1264.05120
  13. [13] M. Javaid, A.A. Bhatti and M. Hussain, On (a, d)-edge-antimagic total labeling of extended w-trees, Util. Math. 87 (2012) 293-303. Zbl1264.05119
  14. [14] M. Javaid, A.A. Bhatti, M. Hussain and K. Ali, Super edge-magic total labeling on forest of extended w-trees, Util. Math. 91 (2013) 155-162. Zbl1300.05275
  15. [15] M. Javaid, M. Hussain, K. Ali and H. Shaker, On super edge-magic total labeling on subdivision of trees, Util. Math. 89 (2012) 169-177. Zbl1267.05230
  16. [16] M. Javaid and A.A. Bhatti, On super (a, d)-edge-antimagic total labeling of subdi- vided stars, Ars Combin. 105 (2012) 503-512. Zbl1274.05421
  17. [17] M. Javaid, On super edge-antimagic total labeling of subdivided stars, Discuss. Math. Graph Theory 34 (2014) 691-705. doi:10.7151/dmgt.1764[Crossref][WoS] 
  18. [18] M. Javaid and A.A. Bhatti, Super (a, d)-edge-antimagic total labeling of subdivided stars and w-trees, Util. Math., to appear. Zbl1274.05421
  19. [19] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451-461. doi:10.4153/CMB-1970-084-1[Crossref] Zbl0213.26203
  20. [20] A. Kotzig and A. Rosa, Magic valuation of complete graphs, Centre de Recherches Mathematiques, Universite de Montreal (1972) CRM-175. 
  21. [21] S.M. Lee and Q.X. Shah, All trees with at most 17 vertices are super edge-magic, 16th MCCCC Conference, Carbondale (Southern Illinois University, November 2002). 
  22. [22] S.M. Lee and M.C. Kong, On super edge-magic n stars, J. Combin. Math. Combin. Comput. 42 (2002) 81-96. Zbl1024.05080
  23. [23] Y.-J. Lu, A proof of three-path trees P(m, n, t) being edge-magic, College Math. 17(2) (2001) 41-44. 
  24. [24] Y.-J. Lu, A proof of three-path trees P(m, n, t) being edge-magic (II), College Math. 20(3) (2004) 51-53. 
  25. [25] A.A.G. Ngurah, R. Simanjuntak and E.T. Baskoro, On (super) edge-magic total labeling of subdivision of K1,3, SUT J. Math. 43 (2007) 127-136. Zbl1175.05116
  26. [26] A.N.M. Salman, A.A.G. Ngurah and N. Izzati, On super edge-magic total labeling of a subdivision of a star Sn, Util. Math. 81 (2010) 275-284. Zbl1214.05153
  27. [27] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph label- ings, in: Proc. of Eleventh Australasian Workshop on Combinatorial Algorithms 11 (2000) 179-189. 
  28. [28] Slamin, M. Bača, Y. Lin, M. Miller and R. Simanjuntak, Edge-magic total labelings of wheel, fans and friendship graphs, Bull. Inst. Combin. Appl. 35 (2002) 89-98. Zbl1008.05137
  29. [29] K.A. Sugeng, M. Miller, Slamin and M. Bača, (a, d)-edge-antimagic total labelings of caterpillars, Lect. Notes Comput. Sci. 3330 (2005) 169-180. Zbl1117.05096
  30. [30] D.B. West, An Introduction to Graph Theory (Prentice-Hall, 1996). Zbl0845.05001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.