On Super Edge-Antimagicness of Subdivided Stars
A. Raheem; M. Javaid; A.Q. Baig
Discussiones Mathematicae Graph Theory (2015)
- Volume: 35, Issue: 4, page 663-673
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topA. Raheem, M. Javaid, and A.Q. Baig. "On Super Edge-Antimagicness of Subdivided Stars." Discussiones Mathematicae Graph Theory 35.4 (2015): 663-673. <http://eudml.org/doc/276022>.
@article{A2015,
abstract = {Enomoto, Llado, Nakamigawa and Ringel (1998) defined the concept of a super (a, 0)-edge-antimagic total labeling and proposed the conjecture that every tree is a super (a, 0)-edge-antimagic total graph. In the support of this conjecture, the present paper deals with different results on super (a, d)-edge-antimagic total labeling of subdivided stars for d ∈ \{0, 1, 2, 3\}.},
author = {A. Raheem, M. Javaid, A.Q. Baig},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {super (a; d)-EAT labeling; stars; subdivision of stars; super -EAT labeling},
language = {eng},
number = {4},
pages = {663-673},
title = {On Super Edge-Antimagicness of Subdivided Stars},
url = {http://eudml.org/doc/276022},
volume = {35},
year = {2015},
}
TY - JOUR
AU - A. Raheem
AU - M. Javaid
AU - A.Q. Baig
TI - On Super Edge-Antimagicness of Subdivided Stars
JO - Discussiones Mathematicae Graph Theory
PY - 2015
VL - 35
IS - 4
SP - 663
EP - 673
AB - Enomoto, Llado, Nakamigawa and Ringel (1998) defined the concept of a super (a, 0)-edge-antimagic total labeling and proposed the conjecture that every tree is a super (a, 0)-edge-antimagic total graph. In the support of this conjecture, the present paper deals with different results on super (a, d)-edge-antimagic total labeling of subdivided stars for d ∈ {0, 1, 2, 3}.
LA - eng
KW - super (a; d)-EAT labeling; stars; subdivision of stars; super -EAT labeling
UR - http://eudml.org/doc/276022
ER -
References
top- [1] M. Bača, Y. Lin, M. Miller and M.Z. Youssef, Edge-antimagic graphs, Discrete Math. 307 (2007) 1232-1244. doi:10.1016/j.disc.2005.10.038[Crossref]
- [2] M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Util. Math. 60 (2001) 229-239. Zbl1011.05056
- [3] M. Bača, Y. Lin and F.A. Muntaner-Batle, Super edge-antimagic labelings of the path-like trees, Util. Math. 73 (2007) 117-128. Zbl1140.05049
- [4] M. Bača and M. Miller, Super Edge-Antimagic Graphs (Brown Walker Press, Boca Raton, Florida USA, 2008).
- [5] M. Bača, A. Semaničová-Fěnovčíková and M.K. Shafiq, A method to generate large classes of edge-antimagic trees, Util. Math. 86 (2011) 33-43. Zbl1264.05115
- [6] Dafik, M. Miller, J. Ryan and M. Bača, On super (a, d)-edge antimagic total labeling of disconnected graphs, Discrete Math. 309 (2009) 4909-4915. doi:10.1016/j.disc.2008.04.031[Crossref][WoS] Zbl1275.05048
- [7] H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998) 105-109. Zbl0918.05090
- [8] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math. 231 (2001) 153-168. doi:0.1016/S0012-365X(00)00314-9 Zbl0977.05120
- [9] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On super edge- magic graph, Ars Combin. 64 (2002) 81-95. Zbl1071.05568
- [10] Y. Fukuchi, A recursive theorem for super edge-magic labeling of trees, SUT J. Math. 36 (2000) 279-285. Zbl0977.05124
- [11] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 17 (2010). Zbl0953.05067
- [12] M. Javaid, M. Hussain, K. Ali and K.H. Dar, Super edge-magic total labeling on w-trees, Util. Math. 86 (2011) 183-191. Zbl1264.05120
- [13] M. Javaid, A.A. Bhatti and M. Hussain, On (a, d)-edge-antimagic total labeling of extended w-trees, Util. Math. 87 (2012) 293-303. Zbl1264.05119
- [14] M. Javaid, A.A. Bhatti, M. Hussain and K. Ali, Super edge-magic total labeling on forest of extended w-trees, Util. Math. 91 (2013) 155-162. Zbl1300.05275
- [15] M. Javaid, M. Hussain, K. Ali and H. Shaker, On super edge-magic total labeling on subdivision of trees, Util. Math. 89 (2012) 169-177. Zbl1267.05230
- [16] M. Javaid and A.A. Bhatti, On super (a, d)-edge-antimagic total labeling of subdi- vided stars, Ars Combin. 105 (2012) 503-512. Zbl1274.05421
- [17] M. Javaid, On super edge-antimagic total labeling of subdivided stars, Discuss. Math. Graph Theory 34 (2014) 691-705. doi:10.7151/dmgt.1764[Crossref][WoS]
- [18] M. Javaid and A.A. Bhatti, Super (a, d)-edge-antimagic total labeling of subdivided stars and w-trees, Util. Math., to appear. Zbl1274.05421
- [19] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451-461. doi:10.4153/CMB-1970-084-1[Crossref] Zbl0213.26203
- [20] A. Kotzig and A. Rosa, Magic valuation of complete graphs, Centre de Recherches Mathematiques, Universite de Montreal (1972) CRM-175.
- [21] S.M. Lee and Q.X. Shah, All trees with at most 17 vertices are super edge-magic, 16th MCCCC Conference, Carbondale (Southern Illinois University, November 2002).
- [22] S.M. Lee and M.C. Kong, On super edge-magic n stars, J. Combin. Math. Combin. Comput. 42 (2002) 81-96. Zbl1024.05080
- [23] Y.-J. Lu, A proof of three-path trees P(m, n, t) being edge-magic, College Math. 17(2) (2001) 41-44.
- [24] Y.-J. Lu, A proof of three-path trees P(m, n, t) being edge-magic (II), College Math. 20(3) (2004) 51-53.
- [25] A.A.G. Ngurah, R. Simanjuntak and E.T. Baskoro, On (super) edge-magic total labeling of subdivision of K1,3, SUT J. Math. 43 (2007) 127-136. Zbl1175.05116
- [26] A.N.M. Salman, A.A.G. Ngurah and N. Izzati, On super edge-magic total labeling of a subdivision of a star Sn, Util. Math. 81 (2010) 275-284. Zbl1214.05153
- [27] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph label- ings, in: Proc. of Eleventh Australasian Workshop on Combinatorial Algorithms 11 (2000) 179-189.
- [28] Slamin, M. Bača, Y. Lin, M. Miller and R. Simanjuntak, Edge-magic total labelings of wheel, fans and friendship graphs, Bull. Inst. Combin. Appl. 35 (2002) 89-98. Zbl1008.05137
- [29] K.A. Sugeng, M. Miller, Slamin and M. Bača, (a, d)-edge-antimagic total labelings of caterpillars, Lect. Notes Comput. Sci. 3330 (2005) 169-180. Zbl1117.05096
- [30] D.B. West, An Introduction to Graph Theory (Prentice-Hall, 1996). Zbl0845.05001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.