Maximum Independent Sets in Direct Products of Cycles or Trees with Arbitrary Graphs
Discussiones Mathematicae Graph Theory (2015)
- Volume: 35, Issue: 4, page 675-688
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topTjaša Paj, and Simon Špacapan. "Maximum Independent Sets in Direct Products of Cycles or Trees with Arbitrary Graphs." Discussiones Mathematicae Graph Theory 35.4 (2015): 675-688. <http://eudml.org/doc/276025>.
@article{TjašaPaj2015,
abstract = {The direct product of graphs G = (V (G),E(G)) and H = (V (H),E(H)) is the graph, denoted as G×H, with vertex set V (G×H) = V (G)×V (H), where vertices (x1, y1) and (x2, y2) are adjacent in G × H if x1x2 ∈ E(G) and y1y2 ∈ E(H). Let n be odd and m even. We prove that every maximum independent set in Pn×G, respectively Cm×G, is of the form (A×C)∪(B× D), where C and D are nonadjacent in G, and A∪B is the bipartition of Pn respectively Cm. We also give a characterization of maximum independent subsets of Pn × G for every even n and discuss the structure of maximum independent sets in T × G where T is a tree.},
author = {Tjaša Paj, Simon Špacapan},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {direct product; independent set},
language = {eng},
number = {4},
pages = {675-688},
title = {Maximum Independent Sets in Direct Products of Cycles or Trees with Arbitrary Graphs},
url = {http://eudml.org/doc/276025},
volume = {35},
year = {2015},
}
TY - JOUR
AU - Tjaša Paj
AU - Simon Špacapan
TI - Maximum Independent Sets in Direct Products of Cycles or Trees with Arbitrary Graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2015
VL - 35
IS - 4
SP - 675
EP - 688
AB - The direct product of graphs G = (V (G),E(G)) and H = (V (H),E(H)) is the graph, denoted as G×H, with vertex set V (G×H) = V (G)×V (H), where vertices (x1, y1) and (x2, y2) are adjacent in G × H if x1x2 ∈ E(G) and y1y2 ∈ E(H). Let n be odd and m even. We prove that every maximum independent set in Pn×G, respectively Cm×G, is of the form (A×C)∪(B× D), where C and D are nonadjacent in G, and A∪B is the bipartition of Pn respectively Cm. We also give a characterization of maximum independent subsets of Pn × G for every even n and discuss the structure of maximum independent sets in T × G where T is a tree.
LA - eng
KW - direct product; independent set
UR - http://eudml.org/doc/276025
ER -
References
top- [1] G. Abay-Asmerom, R. Hammack, C.E. Larson and D.T. Taylor, Notes on the inde- pendence number in the Cartesian product of graphs, Discuss. Math. Graph Theory 31 (2011) 25-35. doi:10.7151/dmgt.1527[Crossref]
- [2] N. Alon, I. Dinur, E. Friedgut and B. Sudakov, Graph products, Fourier analysis and spectral techniques, Geom. Funct. Anal. 14 (2004) 913-940. doi:10.1007/s00039-004-0478-3[Crossref] Zbl1056.05104
- [3] S.H. Badalyan and S.E. Markosyan, On the independence number of the strong product of cycle-powers, Discrete Math. 313 (2013) 105-110. doi:10.1016/j.disc.2012.09.008[WoS][Crossref] Zbl1254.05134
- [4] L.M. Friedler, The independence number of the Cartesian product of graphs, Ars Combin. 99 (2011) 205-216. Zbl1265.05458
- [5] D. Greenwell and L. Lovász, Applications of product colouring, Acta Math. Acad. Sci. Hungar. 25 (1974) 335-340. doi:/10.1007/BF01886093 Zbl0294.05108
- [6] X.B. Geng, J. Wang and H. Zhang, Structure of independent sets in direct products of some vertex-transitive graphs, Acta Math. Sin. (Engl. Ser.) 28 (2012) 697-706.[WoS][Crossref] Zbl1334.05100
- [7] J. Hagauer and S. Klavžar, On independence numbers of the Cartesian product of graphs, Ars Combin. 43 (1996) 149-157. Zbl0881.05061
- [8] R. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs, Second Edition (CRC Press, Boca Raton, FL, 2011). Zbl1283.05001
- [9] P.K. Jha, Further results on independence in direct-product graphs, Ars Combin. 56 (2000) 15-24. Zbl0994.05103
- [10] P.K. Jha and S. Klavžar, Independence in direct-product graphs, Ars Combin. 50 (1998) 53-63. Zbl0963.05069
- [11] S. Klavžar, Some new bounds and exact results on the independence number of Cartesian product graphs, Ars Combin. 74 (2005) 173-186. Zbl1076.05059
- [12] A. Klobučar, Independent sets and independent dominating sets in the strong product of paths and cycles, Math. Commun. 10 (2005) 23-30. Zbl1073.05053
- [13] D. Korže and A. Vesel, A note on the independence number of strong products of odd cycles, Ars Combin. 106 (2012) 473-481. Zbl1289.05353
- [14] B. Larose and C. Tardif, Projectivity and independent sets in powers of graphs, J. Graph Theory 40 (2002) 162-171. doi:10.1002/jgt.10041[Crossref] Zbl1003.05077
- [15] S.P. Martin, J.S. Powell and D.F. Rall, On the independence number of the Carte- sian product of caterpillars, Ars Combin. 60 (2001) 73-84.
- [16] T. Sitthiwirattham, Independent and vertex covering number on Kronecker product of Pn, Int. J. Pure Appl. Math. 73 (2011) 227-234. Zbl1243.05207
- [17] T. Sitthiwirattham and J. Soontharanon, Independent and vertex covering number on Kronecker product of Cn, Int. J. Pure Appl. Math. 71 (2011) 149-157. Zbl1237.05156
- [18] S. Špacapan, The k-independence number of direct products of graphs and Hedet- niemi’s conjecture, European J. Combin. 32 (2011) 1377-1383. doi:10.1016/j.ejc.2011.07.002[Crossref] Zbl1284.05204
- [19] C. Tardif, Graph products and the chromatic difference sequence of vertex-transitive graphs, Discrete Math. 185 (1998) 193-200. doi:10.1016/S0012-365X(97)00171-4[Crossref]
- [20] M. Valencia-Pabon and J. Vera, Independence and coloring properties of direct prod- ucts of some vertex-transitive graphs, Discrete Math. 306 (2006) 2275-2281. doi:10.1016/j.disc.2006.04.013[Crossref] Zbl1111.05040
- [21] H. Zhang, Independent sets in direct products of vertex-transitive graphs, J. Combin. Theory Ser. B 102 (2012) 832-838. doi:10.1016/j.jctb.2011.12.005[Crossref]
- [22] H. Zhang, Primitivity and independent sets in direct products of vertex-transitive graphs, J. Graph Theory 67 (2011) 218-225. doi:10.1002/jgt.20526[Crossref][WoS]
- [23] X. Zhu, A survey on Hedetniemi’s conjecture, Taiwanese J. Math. 2 (1998) 1-24. Zbl0906.05024
- [24] X. Zhu, The fractional version of Hedetniemi’s conjecture is true, European J. Com- bin. 32 (2011) 1168-1175. doi:10.1016/j.ejc.2011.03.004 [Crossref][WoS]
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.