On and
Communications in Mathematics (2015)
- Volume: 23, Issue: 2, page 113-117
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topJena, Susil Kumar. "On $X_1^4+4X_2^4=X_3^8+4X_4^8$ and $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$." Communications in Mathematics 23.2 (2015): 113-117. <http://eudml.org/doc/276029>.
@article{Jena2015,
abstract = {The two related Diophantine equations: $X_1^4+4X_2^4=X_3^8+4X_4^8$ and $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$, have infinitely many nontrivial, primitive integral solutions. We give two parametric solutions, one for each of these equations.},
author = {Jena, Susil Kumar},
journal = {Communications in Mathematics},
keywords = {Diophantine equation $A^4+nB^4=C^2$; Diophantine equation $A^4-nB^4=C^2$; Diophantine equation $X_1^4+4X_2^4=X_3^8+4X_4^8$; Diophantine equation $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$},
language = {eng},
number = {2},
pages = {113-117},
publisher = {University of Ostrava},
title = {On $X_1^4+4X_2^4=X_3^8+4X_4^8$ and $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$},
url = {http://eudml.org/doc/276029},
volume = {23},
year = {2015},
}
TY - JOUR
AU - Jena, Susil Kumar
TI - On $X_1^4+4X_2^4=X_3^8+4X_4^8$ and $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$
JO - Communications in Mathematics
PY - 2015
PB - University of Ostrava
VL - 23
IS - 2
SP - 113
EP - 117
AB - The two related Diophantine equations: $X_1^4+4X_2^4=X_3^8+4X_4^8$ and $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$, have infinitely many nontrivial, primitive integral solutions. We give two parametric solutions, one for each of these equations.
LA - eng
KW - Diophantine equation $A^4+nB^4=C^2$; Diophantine equation $A^4-nB^4=C^2$; Diophantine equation $X_1^4+4X_2^4=X_3^8+4X_4^8$; Diophantine equation $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$
UR - http://eudml.org/doc/276029
ER -
References
top- Choudhry, A., The Diophantine equation , Indian J. Pure Appl. Math., 29, 1998, 1127-1128, (1998) Zbl0923.11050MR1672759
- Dickson, L. E., History of the Theory of Numbers, 2, 1952, Chelsea Publishing Company, New York, (1952)
- Guy, R. K., Unsolved Problems in Number Theory, 2004, Springer Science+Business Media Inc., New York, Third Edition. (2004) Zbl1058.11001MR2076335
- Jena, S. K., Beyond the Method of Infinite Descent, J. Comb. Inf. Syst. Sci., 35, 2010, 501-511, (2010)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.