New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space
Cícero P. Aquino; Henrique F. de Lima
Archivum Mathematicum (2015)
- Volume: 051, Issue: 4, page 201-209
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAquino, Cícero P., and de Lima, Henrique F.. "New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space." Archivum Mathematicum 051.4 (2015): 201-209. <http://eudml.org/doc/276035>.
@article{Aquino2015,
abstract = {In this paper, we deal with complete linear Weingarten hypersurfaces immersed in the hyperbolic space $\mathbb \{H\}^\{n+1\}$, that is, complete hypersurfaces of $\mathbb \{H\}^\{n+1\}$ whose mean curvature $H$ and normalized scalar curvature $R$ satisfy $R=aH+b$ for some $a$, $b\in \mathbb \{R\}$. In this setting, under appropriate restrictions on the mean curvature and on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of $\mathbb \{H\}^\{n+1\}$. Furthermore, a rigidity result concerning the compact case is also given.},
author = {Aquino, Cícero P., de Lima, Henrique F.},
journal = {Archivum Mathematicum},
keywords = {hyperbolic space; linear Weingarten hypersurfaces; totally umbilical hypersurfaces; hyperbolic cylinders},
language = {eng},
number = {4},
pages = {201-209},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space},
url = {http://eudml.org/doc/276035},
volume = {051},
year = {2015},
}
TY - JOUR
AU - Aquino, Cícero P.
AU - de Lima, Henrique F.
TI - New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 4
SP - 201
EP - 209
AB - In this paper, we deal with complete linear Weingarten hypersurfaces immersed in the hyperbolic space $\mathbb {H}^{n+1}$, that is, complete hypersurfaces of $\mathbb {H}^{n+1}$ whose mean curvature $H$ and normalized scalar curvature $R$ satisfy $R=aH+b$ for some $a$, $b\in \mathbb {R}$. In this setting, under appropriate restrictions on the mean curvature and on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of $\mathbb {H}^{n+1}$. Furthermore, a rigidity result concerning the compact case is also given.
LA - eng
KW - hyperbolic space; linear Weingarten hypersurfaces; totally umbilical hypersurfaces; hyperbolic cylinders
UR - http://eudml.org/doc/276035
ER -
References
top- Abe, N., Koike, N., Yamaguchi, S., Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form, Yokohama Math. J. 35 (1987), 123–126. (1987) Zbl0645.53010MR0928379
- Alencar, H., do Carmo, M., 10.1090/S0002-9939-1994-1172943-2, Proc. Amer. Math. Soc. 120 (1994), 1223–1229. (1994) Zbl0802.53017MR1172943DOI10.1090/S0002-9939-1994-1172943-2
- Aquino, C.P., de Lima, H.F., 10.1007/s00605-013-0476-3, Monatsh. Math. 171 (2013), 259–268. (2013) Zbl1279.53055MR3090789DOI10.1007/s00605-013-0476-3
- Caminha, A., 10.1007/s00574-011-0015-6, Bull. Braz. Math. Soc. 42 (2011), 277–300. (2011) Zbl1242.53068MR2833803DOI10.1007/s00574-011-0015-6
- Cartan, É., 10.1007/BF02410700, Ann. Mat. Pura Appl. 17 (1938), 177–191. (1938) Zbl0020.06505MR1553310DOI10.1007/BF02410700
- Cheng, S.Y., Yau, S.T., 10.1007/BF01425237, Math. Ann. 225 (1977), 195–204. (1977) Zbl0349.53041MR0431043DOI10.1007/BF01425237
- Li, H., 10.1007/BF01444243, Math. Ann. 305 (1996), 665–672. (1996) Zbl0864.53040MR1399710DOI10.1007/BF01444243
- Li, H., 10.1007/BF02559973, Ark. Mat. 35 (1997), 327–351. (1997) Zbl0920.53028MR1478784DOI10.1007/BF02559973
- Li, H., Suh, Y.J., Wei, G., 10.4134/BKMS.2009.46.2.321, Bull. Korean Math. Soc. 46 (2009), 321–329. (2009) Zbl1165.53361MR2502796DOI10.4134/BKMS.2009.46.2.321
- Okumura, M., 10.2307/2373587, Amer. J. Math. 96 (1974), 207–213. (1974) Zbl0302.53028MR0353216DOI10.2307/2373587
- Omori, H., 10.2969/jmsj/01920205, J. Math. Soc. Japan 19 (1967), 205–214. (1967) Zbl0154.21501MR0215259DOI10.2969/jmsj/01920205
- Ryan, P.J., Hypersurfaces with parallel Ricci tensor, Osaka J. Math. 8 (1971), 251–259. (1971) Zbl0222.53025MR0296859
- Shu, S., Complete hypersurfaces with constant scalar curvature in a hyperbolic space, Balkan J. Geom. Appl. 12 (2007), 107–115. (2007) Zbl1135.53039MR2321535
- Yau, S.T., 10.1002/cpa.3160280203, Comm. Pure Appl. Math. 28 (1975), 201–228. (1975) MR0431040DOI10.1002/cpa.3160280203
- Yau, S.T., 10.1512/iumj.1976.25.25051, Indiana Univ. Math. J. 25 (1976), 659–670. (1976) MR0417452DOI10.1512/iumj.1976.25.25051
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.