New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space

Cícero P. Aquino; Henrique F. de Lima

Archivum Mathematicum (2015)

  • Volume: 051, Issue: 4, page 201-209
  • ISSN: 0044-8753

Abstract

top
In this paper, we deal with complete linear Weingarten hypersurfaces immersed in the hyperbolic space n + 1 , that is, complete hypersurfaces of n + 1 whose mean curvature H and normalized scalar curvature R satisfy R = a H + b for some a , b . In this setting, under appropriate restrictions on the mean curvature and on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of n + 1 . Furthermore, a rigidity result concerning the compact case is also given.

How to cite

top

Aquino, Cícero P., and de Lima, Henrique F.. "New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space." Archivum Mathematicum 051.4 (2015): 201-209. <http://eudml.org/doc/276035>.

@article{Aquino2015,
abstract = {In this paper, we deal with complete linear Weingarten hypersurfaces immersed in the hyperbolic space $\mathbb \{H\}^\{n+1\}$, that is, complete hypersurfaces of $\mathbb \{H\}^\{n+1\}$ whose mean curvature $H$ and normalized scalar curvature $R$ satisfy $R=aH+b$ for some $a$, $b\in \mathbb \{R\}$. In this setting, under appropriate restrictions on the mean curvature and on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of $\mathbb \{H\}^\{n+1\}$. Furthermore, a rigidity result concerning the compact case is also given.},
author = {Aquino, Cícero P., de Lima, Henrique F.},
journal = {Archivum Mathematicum},
keywords = {hyperbolic space; linear Weingarten hypersurfaces; totally umbilical hypersurfaces; hyperbolic cylinders},
language = {eng},
number = {4},
pages = {201-209},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space},
url = {http://eudml.org/doc/276035},
volume = {051},
year = {2015},
}

TY - JOUR
AU - Aquino, Cícero P.
AU - de Lima, Henrique F.
TI - New characterizations of linear Weingarten hypersurfaces immersed in the hyperbolic space
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 4
SP - 201
EP - 209
AB - In this paper, we deal with complete linear Weingarten hypersurfaces immersed in the hyperbolic space $\mathbb {H}^{n+1}$, that is, complete hypersurfaces of $\mathbb {H}^{n+1}$ whose mean curvature $H$ and normalized scalar curvature $R$ satisfy $R=aH+b$ for some $a$, $b\in \mathbb {R}$. In this setting, under appropriate restrictions on the mean curvature and on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of $\mathbb {H}^{n+1}$. Furthermore, a rigidity result concerning the compact case is also given.
LA - eng
KW - hyperbolic space; linear Weingarten hypersurfaces; totally umbilical hypersurfaces; hyperbolic cylinders
UR - http://eudml.org/doc/276035
ER -

References

top
  1. Abe, N., Koike, N., Yamaguchi, S., Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form, Yokohama Math. J. 35 (1987), 123–126. (1987) Zbl0645.53010MR0928379
  2. Alencar, H., do Carmo, M., 10.1090/S0002-9939-1994-1172943-2, Proc. Amer. Math. Soc. 120 (1994), 1223–1229. (1994) Zbl0802.53017MR1172943DOI10.1090/S0002-9939-1994-1172943-2
  3. Aquino, C.P., de Lima, H.F., 10.1007/s00605-013-0476-3, Monatsh. Math. 171 (2013), 259–268. (2013) Zbl1279.53055MR3090789DOI10.1007/s00605-013-0476-3
  4. Caminha, A., 10.1007/s00574-011-0015-6, Bull. Braz. Math. Soc. 42 (2011), 277–300. (2011) Zbl1242.53068MR2833803DOI10.1007/s00574-011-0015-6
  5. Cartan, É., 10.1007/BF02410700, Ann. Mat. Pura Appl. 17 (1938), 177–191. (1938) Zbl0020.06505MR1553310DOI10.1007/BF02410700
  6. Cheng, S.Y., Yau, S.T., 10.1007/BF01425237, Math. Ann. 225 (1977), 195–204. (1977) Zbl0349.53041MR0431043DOI10.1007/BF01425237
  7. Li, H., 10.1007/BF01444243, Math. Ann. 305 (1996), 665–672. (1996) Zbl0864.53040MR1399710DOI10.1007/BF01444243
  8. Li, H., 10.1007/BF02559973, Ark. Mat. 35 (1997), 327–351. (1997) Zbl0920.53028MR1478784DOI10.1007/BF02559973
  9. Li, H., Suh, Y.J., Wei, G., 10.4134/BKMS.2009.46.2.321, Bull. Korean Math. Soc. 46 (2009), 321–329. (2009) Zbl1165.53361MR2502796DOI10.4134/BKMS.2009.46.2.321
  10. Okumura, M., 10.2307/2373587, Amer. J. Math. 96 (1974), 207–213. (1974) Zbl0302.53028MR0353216DOI10.2307/2373587
  11. Omori, H., 10.2969/jmsj/01920205, J. Math. Soc. Japan 19 (1967), 205–214. (1967) Zbl0154.21501MR0215259DOI10.2969/jmsj/01920205
  12. Ryan, P.J., Hypersurfaces with parallel Ricci tensor, Osaka J. Math. 8 (1971), 251–259. (1971) Zbl0222.53025MR0296859
  13. Shu, S., Complete hypersurfaces with constant scalar curvature in a hyperbolic space, Balkan J. Geom. Appl. 12 (2007), 107–115. (2007) Zbl1135.53039MR2321535
  14. Yau, S.T., 10.1002/cpa.3160280203, Comm. Pure Appl. Math. 28 (1975), 201–228. (1975) MR0431040DOI10.1002/cpa.3160280203
  15. Yau, S.T., 10.1512/iumj.1976.25.25051, Indiana Univ. Math. J. 25 (1976), 659–670. (1976) MR0417452DOI10.1512/iumj.1976.25.25051

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.