Rank tests in regression model based on minimum distance estimates
Kybernetika (2015)
- Volume: 51, Issue: 6, page 909-922
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topNavrátil, Radim. "Rank tests in regression model based on minimum distance estimates." Kybernetika 51.6 (2015): 909-922. <http://eudml.org/doc/276061>.
@article{Navrátil2015,
abstract = {In this paper a new rank test in a linear regression model is introduced. The test statistic is based on a certain minimum distance estimator, however, unlike classical rank tests in regression it is not a simple linear rank statistic. Its exact distribution under the null hypothesis is derived, and further, the asymptotic distribution both under the null hypothesis and the local alternative is investigated. It is shown that the proposed test is applicable in measurement error models. Finally, a simulation study is conducted to show a good performance of the test. It has, in some situations, a greater power than the widely used Wilcoxon rank test.},
author = {Navrátil, Radim},
journal = {Kybernetika},
keywords = {measurement errors; minimum distance estimates; rank tests},
language = {eng},
number = {6},
pages = {909-922},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Rank tests in regression model based on minimum distance estimates},
url = {http://eudml.org/doc/276061},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Navrátil, Radim
TI - Rank tests in regression model based on minimum distance estimates
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 6
SP - 909
EP - 922
AB - In this paper a new rank test in a linear regression model is introduced. The test statistic is based on a certain minimum distance estimator, however, unlike classical rank tests in regression it is not a simple linear rank statistic. Its exact distribution under the null hypothesis is derived, and further, the asymptotic distribution both under the null hypothesis and the local alternative is investigated. It is shown that the proposed test is applicable in measurement error models. Finally, a simulation study is conducted to show a good performance of the test. It has, in some situations, a greater power than the widely used Wilcoxon rank test.
LA - eng
KW - measurement errors; minimum distance estimates; rank tests
UR - http://eudml.org/doc/276061
ER -
References
top- Adcock, R. J., 10.2307/2635777, The Analyst 4 (1877), 183-184. DOI10.2307/2635777
- Anderson, T., Darling, D., 10.1214/aoms/1177729437, Ann. Math. Statist. 23 (1952), 193-212. Zbl0048.11301MR0050238DOI10.1214/aoms/1177729437
- Buonaccorsi, J. P., 10.1201/9781420066586, Chapman and Hall/CRC, Boca Raton 2010. Zbl1277.62014MR2682774DOI10.1201/9781420066586
- Carroll, R. J., Ruppert, D., Stefanski, L. A., Crainiceanu, C. M., 10.1201/9781420010138, Chapman and Hall/CRC, Boca Raton 2006. Zbl1119.62063MR2243417DOI10.1201/9781420010138
- Cheng, C. L., Ness, J. W. van, 10.1002/1097-0258(20000815)19:15<2077::aid-sim500>3.0.co;2-7 DOI10.1002/1097-0258(20000815)19:15<2077::aid-sim500>3.0.co;2-7
- Drion, E. F., 10.1016/s1385-7258(51)50036-7, Indagationes Math. 13 (1951), 256-260. Zbl0042.38602MR0042665DOI10.1016/s1385-7258(51)50036-7
- Feng, L., Zou, C., Wang, Z., 10.1016/j.spl.2011.11.025, Statist. Probab. Lett. 82 (2012), 535-541. Zbl1237.62041MR2887469DOI10.1016/j.spl.2011.11.025
- Friedman, M., 10.1080/01621459.1937.10503522, J. Amer. Statist. Assoc. 32 (1937), 675-701. DOI10.1080/01621459.1937.10503522
- Fuller, W. A., 10.1002/jae.3950030407, John Wiley and Sons, New York 1987. Zbl1105.62071MR0898653DOI10.1002/jae.3950030407
- Golub, G. H., Loan, C. F. van, 10.1137/0717073, SIAM J. Numer. Anal. 17 (1980), 883-893. MR0595451DOI10.1137/0717073
- Hájek, J., Šidák, Z., Sen, P. K., 10.1016/b978-012642350-1/50020-5, Academic Press, New York 1999. MR1680991DOI10.1016/b978-012642350-1/50020-5
- Hotteling, H., Pabst, M. R., 10.1214/aoms/1177732543, Ann. Math. Statist. 7 (1936), 29-43. DOI10.1214/aoms/1177732543
- Jurečková, J., Koul, H. L., Navrátil, R., Picek, J., Behavior of R-estimators under measurement errors., To apper in Bernoulli.
- Jurečková, J., Picek, J., Saleh, A. K. Md. E., 10.1016/j.csda.2009.08.020, Comput. Statist. Data Anal. 54 (2010), 3108-3120. Zbl1284.62420MR2727738DOI10.1016/j.csda.2009.08.020
- Jurečková, J., Sen, P. K., Picek, J., Metodological Tools in Robust and Nonparametric Statistics., Chapman and Hall/CRC Press, Boca Raton, London 2013. MR2963549
- Koul, H. L., 10.1007/978-1-4613-0055-7, Springer, New York 2002. Zbl1007.62047MR1911855DOI10.1007/978-1-4613-0055-7
- Lindley, D. V., 10.2307/2984115, Suppl. J. Roy. Statist. Soc. 9 (1947), 218-244. Zbl0031.17202MR0023492DOI10.2307/2984115
- Navrátil, R., Saleh, A. K. Md. E., Rank tests of symmetry and R-estimation of location parameter under measurement errors., Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 50 (2011), 95-102. MR2920711
- Pitman, E. J. G., Lecture Notes on Nonparametric Statistics., Columbia University, New York 1948.
- Scott, E. L., 10.2307/2984115, Anal. Math. Stat. 21 (1950), 284-288. Zbl0038.29703MR0035424DOI10.2307/2984115
- Smirnov, N. V., Sur la distribution de (criterium de m. r. v. mises)., C. R. Akad. Sci. Paris 202 (1936), 449-452.
- Tolmatz, L., 10.1214/aop/1020107767, The Annals of Probab. 30 (2002), 253-269. Zbl1018.60039MR1894107DOI10.1214/aop/1020107767
- Tolmatz, L., Addenda: On the distribution of the square integral of the brownian bridge., The Annals of Probab. 31 (2003), 530-532. MR1959802
- Wilcoxon, F., 10.2307/3001968, Biometrics 1 (1945), 80-83. DOI10.2307/3001968
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.