Rank tests in regression model based on minimum distance estimates

Radim Navrátil

Kybernetika (2015)

  • Volume: 51, Issue: 6, page 909-922
  • ISSN: 0023-5954

Abstract

top
In this paper a new rank test in a linear regression model is introduced. The test statistic is based on a certain minimum distance estimator, however, unlike classical rank tests in regression it is not a simple linear rank statistic. Its exact distribution under the null hypothesis is derived, and further, the asymptotic distribution both under the null hypothesis and the local alternative is investigated. It is shown that the proposed test is applicable in measurement error models. Finally, a simulation study is conducted to show a good performance of the test. It has, in some situations, a greater power than the widely used Wilcoxon rank test.

How to cite

top

Navrátil, Radim. "Rank tests in regression model based on minimum distance estimates." Kybernetika 51.6 (2015): 909-922. <http://eudml.org/doc/276061>.

@article{Navrátil2015,
abstract = {In this paper a new rank test in a linear regression model is introduced. The test statistic is based on a certain minimum distance estimator, however, unlike classical rank tests in regression it is not a simple linear rank statistic. Its exact distribution under the null hypothesis is derived, and further, the asymptotic distribution both under the null hypothesis and the local alternative is investigated. It is shown that the proposed test is applicable in measurement error models. Finally, a simulation study is conducted to show a good performance of the test. It has, in some situations, a greater power than the widely used Wilcoxon rank test.},
author = {Navrátil, Radim},
journal = {Kybernetika},
keywords = {measurement errors; minimum distance estimates; rank tests},
language = {eng},
number = {6},
pages = {909-922},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Rank tests in regression model based on minimum distance estimates},
url = {http://eudml.org/doc/276061},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Navrátil, Radim
TI - Rank tests in regression model based on minimum distance estimates
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 6
SP - 909
EP - 922
AB - In this paper a new rank test in a linear regression model is introduced. The test statistic is based on a certain minimum distance estimator, however, unlike classical rank tests in regression it is not a simple linear rank statistic. Its exact distribution under the null hypothesis is derived, and further, the asymptotic distribution both under the null hypothesis and the local alternative is investigated. It is shown that the proposed test is applicable in measurement error models. Finally, a simulation study is conducted to show a good performance of the test. It has, in some situations, a greater power than the widely used Wilcoxon rank test.
LA - eng
KW - measurement errors; minimum distance estimates; rank tests
UR - http://eudml.org/doc/276061
ER -

References

top
  1. Adcock, R. J., 10.2307/2635777, The Analyst 4 (1877), 183-184. DOI10.2307/2635777
  2. Anderson, T., Darling, D., 10.1214/aoms/1177729437, Ann. Math. Statist. 23 (1952), 193-212. Zbl0048.11301MR0050238DOI10.1214/aoms/1177729437
  3. Buonaccorsi, J. P., 10.1201/9781420066586, Chapman and Hall/CRC, Boca Raton 2010. Zbl1277.62014MR2682774DOI10.1201/9781420066586
  4. Carroll, R. J., Ruppert, D., Stefanski, L. A., Crainiceanu, C. M., 10.1201/9781420010138, Chapman and Hall/CRC, Boca Raton 2006. Zbl1119.62063MR2243417DOI10.1201/9781420010138
  5. Cheng, C. L., Ness, J. W. van, 10.1002/1097-0258(20000815)19:15<2077::aid-sim500>3.0.co;2-7 DOI10.1002/1097-0258(20000815)19:15<2077::aid-sim500>3.0.co;2-7
  6. Drion, E. F., 10.1016/s1385-7258(51)50036-7, Indagationes Math. 13 (1951), 256-260. Zbl0042.38602MR0042665DOI10.1016/s1385-7258(51)50036-7
  7. Feng, L., Zou, C., Wang, Z., 10.1016/j.spl.2011.11.025, Statist. Probab. Lett. 82 (2012), 535-541. Zbl1237.62041MR2887469DOI10.1016/j.spl.2011.11.025
  8. Friedman, M., 10.1080/01621459.1937.10503522, J. Amer. Statist. Assoc. 32 (1937), 675-701. DOI10.1080/01621459.1937.10503522
  9. Fuller, W. A., 10.1002/jae.3950030407, John Wiley and Sons, New York 1987. Zbl1105.62071MR0898653DOI10.1002/jae.3950030407
  10. Golub, G. H., Loan, C. F. van, 10.1137/0717073, SIAM J. Numer. Anal. 17 (1980), 883-893. MR0595451DOI10.1137/0717073
  11. Hájek, J., Šidák, Z., Sen, P. K., 10.1016/b978-012642350-1/50020-5, Academic Press, New York 1999. MR1680991DOI10.1016/b978-012642350-1/50020-5
  12. Hotteling, H., Pabst, M. R., 10.1214/aoms/1177732543, Ann. Math. Statist. 7 (1936), 29-43. DOI10.1214/aoms/1177732543
  13. Jurečková, J., Koul, H. L., Navrátil, R., Picek, J., Behavior of R-estimators under measurement errors., To apper in Bernoulli. 
  14. Jurečková, J., Picek, J., Saleh, A. K. Md. E., 10.1016/j.csda.2009.08.020, Comput. Statist. Data Anal. 54 (2010), 3108-3120. Zbl1284.62420MR2727738DOI10.1016/j.csda.2009.08.020
  15. Jurečková, J., Sen, P. K., Picek, J., Metodological Tools in Robust and Nonparametric Statistics., Chapman and Hall/CRC Press, Boca Raton, London 2013. MR2963549
  16. Koul, H. L., 10.1007/978-1-4613-0055-7, Springer, New York 2002. Zbl1007.62047MR1911855DOI10.1007/978-1-4613-0055-7
  17. Lindley, D. V., 10.2307/2984115, Suppl. J. Roy. Statist. Soc. 9 (1947), 218-244. Zbl0031.17202MR0023492DOI10.2307/2984115
  18. Navrátil, R., Saleh, A. K. Md. E., Rank tests of symmetry and R-estimation of location parameter under measurement errors., Acta Univ. Palacki. Olomuc., Fac. rer. nat., Mathematica 50 (2011), 95-102. MR2920711
  19. Pitman, E. J. G., Lecture Notes on Nonparametric Statistics., Columbia University, New York 1948. 
  20. Scott, E. L., 10.2307/2984115, Anal. Math. Stat. 21 (1950), 284-288. Zbl0038.29703MR0035424DOI10.2307/2984115
  21. Smirnov, N. V., Sur la distribution de ω 2 (criterium de m. r. v. mises)., C. R. Akad. Sci. Paris 202 (1936), 449-452. 
  22. Tolmatz, L., 10.1214/aop/1020107767, The Annals of Probab. 30 (2002), 253-269. Zbl1018.60039MR1894107DOI10.1214/aop/1020107767
  23. Tolmatz, L., Addenda: On the distribution of the square integral of the brownian bridge., The Annals of Probab. 31 (2003), 530-532. MR1959802
  24. Wilcoxon, F., 10.2307/3001968, Biometrics 1 (1945), 80-83. DOI10.2307/3001968

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.