Branching problems and -actions
Archivum Mathematicum (2015)
- Volume: 051, Issue: 5, page 331-346
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topPandžić, Pavle, and Somberg, Petr. "Branching problems and ${\mathfrak {sl}}(2,\mathbb {C})$-actions." Archivum Mathematicum 051.5 (2015): 331-346. <http://eudml.org/doc/276064>.
@article{Pandžić2015,
abstract = {We study certain $\{\mathfrak \{sl\}\}(2,\mathbb \{C\})$-actions associated to specific examples of branching of scalar generalized Verma modules for compatible pairs $(\mathfrak \{g\},\mathfrak \{p\})$, $(\mathfrak \{g\}^\{\prime \},\mathfrak \{p\}^\{\prime \})$ of Lie algebras and their parabolic subalgebras.},
author = {Pandžić, Pavle, Somberg, Petr},
journal = {Archivum Mathematicum},
keywords = {representation theory of simple Lie algebra; generalized Verma modules; singular vectors and composition series; relative Lie algebra and Dirac cohomology; representation theory of simple Lie algebra; generalized Verma modules; singular vectors and composition series; relative Lie algebra and Dirac cohomology},
language = {eng},
number = {5},
pages = {331-346},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Branching problems and $\{\mathfrak \{sl\}\}(2,\mathbb \{C\})$-actions},
url = {http://eudml.org/doc/276064},
volume = {051},
year = {2015},
}
TY - JOUR
AU - Pandžić, Pavle
AU - Somberg, Petr
TI - Branching problems and ${\mathfrak {sl}}(2,\mathbb {C})$-actions
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 5
SP - 331
EP - 346
AB - We study certain ${\mathfrak {sl}}(2,\mathbb {C})$-actions associated to specific examples of branching of scalar generalized Verma modules for compatible pairs $(\mathfrak {g},\mathfrak {p})$, $(\mathfrak {g}^{\prime },\mathfrak {p}^{\prime })$ of Lie algebras and their parabolic subalgebras.
LA - eng
KW - representation theory of simple Lie algebra; generalized Verma modules; singular vectors and composition series; relative Lie algebra and Dirac cohomology; representation theory of simple Lie algebra; generalized Verma modules; singular vectors and composition series; relative Lie algebra and Dirac cohomology
UR - http://eudml.org/doc/276064
ER -
References
top- Chevalley, C., Eilenberg, S., 10.1090/S0002-9947-1948-0024908-8, Trans. Amer. Math. Soc. 63 (1948), 85–124. (1948) Zbl0031.24803MR0024908DOI10.1090/S0002-9947-1948-0024908-8
- Huang, J.-S., Pandžić, P., Dirac operators in representation theory, Mathematics: Theory and Applications, Birkhäuser Boston, 2006, pp. xii+199. (2006) Zbl1103.22008MR2244116
- Huang, J.-S., Xiao, W., 10.1007/s00029-011-0085-8, Selecta Math. (N.S.) 18 (4) (2012), 803–824. (2012) Zbl1257.22012MR3000469DOI10.1007/s00029-011-0085-8
- Humphreys, J.E., 10.1090/gsm/094/01, Grad. Stud. Math., vol. 94, 2008. (2008) MR2428237DOI10.1090/gsm/094/01
- Kobayashi, T., Ørsted, B., Somberg, P., Souček, V., Branching laws for Verma modules and applications in parabolic geometry. II, preprint.
- Kobayashi, T., Ørsted, B., Somberg, P., Souček, V., Branching laws for Verma modules and applications in parabolic geometry. I, Adv. Math. 285 (2015), 1–57. (2015) Zbl1327.53044MR3406542
- Kobayashi, T., Pevzner, M., Differential symmetry breaking operators. I-General theory and F-method. II-Rankin-Cohen operators for symmetric pairs, to appear in Selecta Math., arXiv:1301.2111.
- Kostant, B., 10.2307/1970237, Ann. of Math. (2) 74 (2) (1961), 329–387. (1961) Zbl0134.03501MR0142696DOI10.2307/1970237
- Kostant, B., Verma modules and the existence of quasi-invariant differential operators, Lecture Notes in Math., Springer Verlag, 1974, pp. 101–129. (1974) MR0396853
- Pandžić, P., Somberg, P., Higher Dirac cohomology of modules with generalized infinitesimal character, to appear in Transform. Groups, arXiv:1310.3570.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.