A note on the multiplier ideals of monomial ideals
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 4, page 905-913
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGong, Cheng, and Tang, Zhongming. "A note on the multiplier ideals of monomial ideals." Czechoslovak Mathematical Journal 65.4 (2015): 905-913. <http://eudml.org/doc/276091>.
@article{Gong2015,
abstract = {Let $\mathfrak \{a\}\subseteq \{\mathbb \{C\}\}[x_1,\ldots ,x_n]$ be a monomial ideal and $\{\mathcal \{J\}\}(\mathfrak \{a\}^c)$ the multiplier ideal of $\mathfrak \{a\}$ with coefficient $c$. Then $\{\mathcal \{J\}\}(\mathfrak \{a\}^c)$ is also a monomial ideal of $\{\mathbb \{C\}\}[x_1,\ldots ,x_n]$, and the equality $\{\mathcal \{J\}\}(\mathfrak \{a\}^c)=\mathfrak \{a\}$ implies that $0<c<n+1$. We mainly discuss the problem when $\{\mathcal \{J\}\}(\mathfrak \{a\})=\mathfrak \{a\}$ or $\{\mathcal \{J\}\}(\mathfrak \{a\}^\{n+1-\varepsilon \})=\mathfrak \{a\}$ for all $0<\varepsilon <1$. It is proved that if $\{\mathcal \{J\}\}(\mathfrak \{a\})=\mathfrak \{a\}$ then $\mathfrak \{a\}$ is principal, and if $\{\mathcal \{J\}\}(\mathfrak \{a\}^\{n+1-\varepsilon \})=\mathfrak \{a\}$ holds for all $0<\varepsilon <1$ then $\mathfrak \{a\}=(x_1,\ldots ,x_n)$. One global result is also obtained. Let $\tilde\{\mathfrak \{a\}\}$ be the ideal sheaf on $\{\mathbb \{P\}\}^\{n-1\}$ associated with $\mathfrak \{a\}$. Then it is proved that the equality $\{\mathcal \{J\}\}(\tilde\{\mathfrak \{a\}\})=\tilde\{\mathfrak \{a\}\}$ implies that $\tilde\{\mathfrak \{a\}\}$ is principal.},
author = {Gong, Cheng, Tang, Zhongming},
journal = {Czechoslovak Mathematical Journal},
keywords = {multiplier ideal; monomial ideal; convex set},
language = {eng},
number = {4},
pages = {905-913},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the multiplier ideals of monomial ideals},
url = {http://eudml.org/doc/276091},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Gong, Cheng
AU - Tang, Zhongming
TI - A note on the multiplier ideals of monomial ideals
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 905
EP - 913
AB - Let $\mathfrak {a}\subseteq {\mathbb {C}}[x_1,\ldots ,x_n]$ be a monomial ideal and ${\mathcal {J}}(\mathfrak {a}^c)$ the multiplier ideal of $\mathfrak {a}$ with coefficient $c$. Then ${\mathcal {J}}(\mathfrak {a}^c)$ is also a monomial ideal of ${\mathbb {C}}[x_1,\ldots ,x_n]$, and the equality ${\mathcal {J}}(\mathfrak {a}^c)=\mathfrak {a}$ implies that $0<c<n+1$. We mainly discuss the problem when ${\mathcal {J}}(\mathfrak {a})=\mathfrak {a}$ or ${\mathcal {J}}(\mathfrak {a}^{n+1-\varepsilon })=\mathfrak {a}$ for all $0<\varepsilon <1$. It is proved that if ${\mathcal {J}}(\mathfrak {a})=\mathfrak {a}$ then $\mathfrak {a}$ is principal, and if ${\mathcal {J}}(\mathfrak {a}^{n+1-\varepsilon })=\mathfrak {a}$ holds for all $0<\varepsilon <1$ then $\mathfrak {a}=(x_1,\ldots ,x_n)$. One global result is also obtained. Let $\tilde{\mathfrak {a}}$ be the ideal sheaf on ${\mathbb {P}}^{n-1}$ associated with $\mathfrak {a}$. Then it is proved that the equality ${\mathcal {J}}(\tilde{\mathfrak {a}})=\tilde{\mathfrak {a}}$ implies that $\tilde{\mathfrak {a}}$ is principal.
LA - eng
KW - multiplier ideal; monomial ideal; convex set
UR - http://eudml.org/doc/276091
ER -
References
top- Blickle, M., 10.1007/s00209-004-0655-y, Math. Z. 248 (2004), 113-121. (2004) Zbl1061.14055MR2092724DOI10.1007/s00209-004-0655-y
- Blickle, M., Lazarsfeld, R., An informal introduction to multiplier ideals, Trends in Commutative Algebra. Mathematical Sciences Research Institute Publications 51 Cambridge University Press, Cambridge (2004), 87-114 L. L. Avramov et al. (2004) Zbl1084.14015MR2132649
- Demailly, J.-P., Ein, L., Lazarsfeld, R., 10.1307/mmj/1030132712, Mich. Math. J. 48 (2000), 137-156. (2000) Zbl1077.14516MR1786484DOI10.1307/mmj/1030132712
- Eisenbud, D., Commutative Algebra with a View Toward Algebraic Geometry, Graduate Texts in Mathematics 150 Springer, Berlin (1995). (1995) Zbl0819.13001MR1322960
- Esnault, H., Viehweg, E., Lectures on Vanishing Theorems, DMV Seminar 20 Birkhäuser, Basel (1992). (1992) Zbl0779.14003MR1193913
- Fulton, W., Introduction to Toric Varieties, Annals of Mathematics Studies 131 Princeton University Press, Princeton (1993). (1993) Zbl0813.14039MR1234037
- Hara, N., Yoshida, K.-I., 10.1090/S0002-9947-03-03285-9, Trans. Am. Math. Soc. 355 (2003), 3143-3174. (2003) Zbl1028.13003MR1974679DOI10.1090/S0002-9947-03-03285-9
- Hartshorne, R., Algebraic Geometry, Graduate Texts in Mathematics 52 Springer, New York (1977). (1977) Zbl0367.14001MR0463157
- Howald, J. A., 10.1090/S0002-9947-01-02720-9, Trans. Am. Math. Soc. 353 (2001), 2665-2671. (2001) Zbl0979.13026MR1828466DOI10.1090/S0002-9947-01-02720-9
- Hübl, R., Swanson, I., 10.1307/mmj/1220879418, Mich. Math. J. 57 (2008), 447-462. (2008) Zbl1180.13005MR2492462DOI10.1307/mmj/1220879418
- Lazarsfeld, R., Positivity in Algebraic Geometry II. Positivity for Vector Bundles, and Multiplier Ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge Springer, Berlin (2004). (2004) MR2095471
- Lipman, J., Adjoints and polars of simple complete ideals in two-dimensional regular local rings, Bull. Soc. Math. Belg., Sér. A 45 (1993), 223-244. (1993) Zbl0796.13020MR1316244
- Nadel, A. M., Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. Math. (2) 132 (1990), 549-596. (1990) Zbl0731.53063MR1078269
- Siu, Y.-T., 10.1007/BF02884693, Sci. China, Ser. A 48 (2005), 1-31. (2005) Zbl1131.32010MR2156488DOI10.1007/BF02884693
- Swanson, I., Huneke, C., Integral Closure of Ideals, Rings, and Modules, London Mathematical Society Lecture Note Series 336 Cambridge University Press, Cambridge (2006). (2006) Zbl1117.13001MR2266432
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.