Some Applications of new Modified q-Szász–Mirakyan Operators
Ramesh P. PATHAK; Shiv Kumar SAHOO
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2015)
- Volume: 54, Issue: 2, page 71-82
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topPATHAK, Ramesh P., and SAHOO, Shiv Kumar. "Some Applications of new Modified q-Szász–Mirakyan Operators." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 54.2 (2015): 71-82. <http://eudml.org/doc/276092>.
@article{PATHAK2015,
abstract = {This paper we introducing a new sequence of positive q-integral new Modified q-Szász-Mirakyan Operators. We show that it is a weighted approximation process in the polynomial space of continuous functions defined on $[0,\infty )$. Weighted statistical approximation theorem, Korovkin-type theorems for fuzzy continuous functions, an estimate for the rate of convergence and some properties are also obtained for these operators.},
author = {PATHAK, Ramesh P., SAHOO, Shiv Kumar},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {q-analogue Baskakov operators; q-Durrmeyer operators; rate of convergence; weighted approximation},
language = {eng},
number = {2},
pages = {71-82},
publisher = {Palacký University Olomouc},
title = {Some Applications of new Modified q-Szász–Mirakyan Operators},
url = {http://eudml.org/doc/276092},
volume = {54},
year = {2015},
}
TY - JOUR
AU - PATHAK, Ramesh P.
AU - SAHOO, Shiv Kumar
TI - Some Applications of new Modified q-Szász–Mirakyan Operators
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2015
PB - Palacký University Olomouc
VL - 54
IS - 2
SP - 71
EP - 82
AB - This paper we introducing a new sequence of positive q-integral new Modified q-Szász-Mirakyan Operators. We show that it is a weighted approximation process in the polynomial space of continuous functions defined on $[0,\infty )$. Weighted statistical approximation theorem, Korovkin-type theorems for fuzzy continuous functions, an estimate for the rate of convergence and some properties are also obtained for these operators.
LA - eng
KW - q-analogue Baskakov operators; q-Durrmeyer operators; rate of convergence; weighted approximation
UR - http://eudml.org/doc/276092
ER -
References
top- Aral, A., Gupta, V., 10.2478/s12175-011-0032-3, Math. Slovaca 61, 4 (2011), 619–634. (2011) Zbl1265.41050MR2813872DOI10.2478/s12175-011-0032-3
- Aral, A., Gupta, V., 10.1016/j.na.2009.07.052, Nonlinear Anal. 72 (2010), 1171–1180. (2010) Zbl1180.41012MR2577517DOI10.1016/j.na.2009.07.052
- Kasana, H. S., Prasad, G., Agrawal, P. N., Sahai, A., Modified Szász operators, In: Proc. of Int. Con. on Math. Anal. and its Appl. Pergamon Press (1985), 29–41. (1985) MR0951655
- Sharma, H., 10.1186/2251-7456-6-24, Mathematical Sciences 6, 1:24 (2012), 1–6. (2012) Zbl1264.41017MR3002753DOI10.1186/2251-7456-6-24
- Sharma, H., Aujla, S. J., 10.1186/2251-7456-6-26, Math. Sci. 6, 1:26 (2012), 1–9. (2012) Zbl1264.41018MR3030364DOI10.1186/2251-7456-6-26
- Burgin, M., Duman, O., 10.1007/s11117-009-0041-4, Positivity 15 (2011), 57–72. (2011) Zbl1222.41031MR2782747DOI10.1007/s11117-009-0041-4
- Orkcu, M., Dorgu, O., 10.1016/j.na.2011.11.029, Nonlinear Anal. 75, 5 (2012), 2874–2882. (2012) MR2878482DOI10.1016/j.na.2011.11.029
- Deo, N., 10.1016/j.amc.2012.04.012, Appl. Math. Compute. 218 (2012), 10486–10491. (2012) Zbl1259.41031MR2927065DOI10.1016/j.amc.2012.04.012
- Deo, N., Noor, M. A., Siddiqui, M. A., 10.1016/j.amc.2007.12.056, Appl. Math. Compute. 201 (2008), 604–612. (2008) MR2431957DOI10.1016/j.amc.2007.12.056
- Deo, N., Bhardwaj, N., Singh, S. P., 10.1007/s13370-011-0041-y, Afr. Mat. 24, 1 (2013), 77–82. (2013) Zbl1263.41010MR3019807DOI10.1007/s13370-011-0041-y
- Duman, O., Orhan, C., 10.4064/sm161-2-6, Studia Math. 161 (2006), 187–197. (2006) MR2033235DOI10.4064/sm161-2-6
- Dorgu, O., Duman, O., Statistical approximation of Meyer–König and Zeller operators based on q-integers, Publ. Math. Debrecen 68 (2006), 199–214. (2006) MR2213551
- Sahoo, S. K., Singh, S. P., Some approximation results on a special class of positive linear operators, Proc. Math. Soc., B. H. University 24, 4 (2008), 1–9. (2008)
- Acar, T., Aral, A., Gupta, V., 10.1007/s13373-011-0005-4, Bull. Math. Sci. 1 (2011), 99–113. (2011) Zbl1255.41001MR2823789DOI10.1007/s13373-011-0005-4
- Basakov, V. A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk. 131 (1973), 249–251. (1973)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.