Some Applications of new Modified q-Szász–Mirakyan Operators

Ramesh P. PATHAK; Shiv Kumar SAHOO

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2015)

  • Volume: 54, Issue: 2, page 71-82
  • ISSN: 0231-9721

Abstract

top
This paper we introducing a new sequence of positive q-integral new Modified q-Szász-Mirakyan Operators. We show that it is a weighted approximation process in the polynomial space of continuous functions defined on [ 0 , ) . Weighted statistical approximation theorem, Korovkin-type theorems for fuzzy continuous functions, an estimate for the rate of convergence and some properties are also obtained for these operators.

How to cite

top

PATHAK, Ramesh P., and SAHOO, Shiv Kumar. "Some Applications of new Modified q-Szász–Mirakyan Operators." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 54.2 (2015): 71-82. <http://eudml.org/doc/276092>.

@article{PATHAK2015,
abstract = {This paper we introducing a new sequence of positive q-integral new Modified q-Szász-Mirakyan Operators. We show that it is a weighted approximation process in the polynomial space of continuous functions defined on $[0,\infty )$. Weighted statistical approximation theorem, Korovkin-type theorems for fuzzy continuous functions, an estimate for the rate of convergence and some properties are also obtained for these operators.},
author = {PATHAK, Ramesh P., SAHOO, Shiv Kumar},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {q-analogue Baskakov operators; q-Durrmeyer operators; rate of convergence; weighted approximation},
language = {eng},
number = {2},
pages = {71-82},
publisher = {Palacký University Olomouc},
title = {Some Applications of new Modified q-Szász–Mirakyan Operators},
url = {http://eudml.org/doc/276092},
volume = {54},
year = {2015},
}

TY - JOUR
AU - PATHAK, Ramesh P.
AU - SAHOO, Shiv Kumar
TI - Some Applications of new Modified q-Szász–Mirakyan Operators
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2015
PB - Palacký University Olomouc
VL - 54
IS - 2
SP - 71
EP - 82
AB - This paper we introducing a new sequence of positive q-integral new Modified q-Szász-Mirakyan Operators. We show that it is a weighted approximation process in the polynomial space of continuous functions defined on $[0,\infty )$. Weighted statistical approximation theorem, Korovkin-type theorems for fuzzy continuous functions, an estimate for the rate of convergence and some properties are also obtained for these operators.
LA - eng
KW - q-analogue Baskakov operators; q-Durrmeyer operators; rate of convergence; weighted approximation
UR - http://eudml.org/doc/276092
ER -

References

top
  1. Aral, A., Gupta, V., 10.2478/s12175-011-0032-3, Math. Slovaca 61, 4 (2011), 619–634. (2011) Zbl1265.41050MR2813872DOI10.2478/s12175-011-0032-3
  2. Aral, A., Gupta, V., 10.1016/j.na.2009.07.052, Nonlinear Anal. 72 (2010), 1171–1180. (2010) Zbl1180.41012MR2577517DOI10.1016/j.na.2009.07.052
  3. Kasana, H. S., Prasad, G., Agrawal, P. N., Sahai, A., Modified Szász operators, In: Proc. of Int. Con. on Math. Anal. and its Appl. Pergamon Press (1985), 29–41. (1985) MR0951655
  4. Sharma, H., 10.1186/2251-7456-6-24, Mathematical Sciences 6, 1:24 (2012), 1–6. (2012) Zbl1264.41017MR3002753DOI10.1186/2251-7456-6-24
  5. Sharma, H., Aujla, S. J., 10.1186/2251-7456-6-26, Math. Sci. 6, 1:26 (2012), 1–9. (2012) Zbl1264.41018MR3030364DOI10.1186/2251-7456-6-26
  6. Burgin, M., Duman, O., 10.1007/s11117-009-0041-4, Positivity 15 (2011), 57–72. (2011) Zbl1222.41031MR2782747DOI10.1007/s11117-009-0041-4
  7. Orkcu, M., Dorgu, O., 10.1016/j.na.2011.11.029, Nonlinear Anal. 75, 5 (2012), 2874–2882. (2012) MR2878482DOI10.1016/j.na.2011.11.029
  8. Deo, N., 10.1016/j.amc.2012.04.012, Appl. Math. Compute. 218 (2012), 10486–10491. (2012) Zbl1259.41031MR2927065DOI10.1016/j.amc.2012.04.012
  9. Deo, N., Noor, M. A., Siddiqui, M. A., 10.1016/j.amc.2007.12.056, Appl. Math. Compute. 201 (2008), 604–612. (2008) MR2431957DOI10.1016/j.amc.2007.12.056
  10. Deo, N., Bhardwaj, N., Singh, S. P., 10.1007/s13370-011-0041-y, Afr. Mat. 24, 1 (2013), 77–82. (2013) Zbl1263.41010MR3019807DOI10.1007/s13370-011-0041-y
  11. Duman, O., Orhan, C., 10.4064/sm161-2-6, Studia Math. 161 (2006), 187–197. (2006) MR2033235DOI10.4064/sm161-2-6
  12. Dorgu, O., Duman, O., Statistical approximation of Meyer–König and Zeller operators based on q-integers, Publ. Math. Debrecen 68 (2006), 199–214. (2006) MR2213551
  13. Sahoo, S. K., Singh, S. P., Some approximation results on a special class of positive linear operators, Proc. Math. Soc., B. H. University 24, 4 (2008), 1–9. (2008) 
  14. Acar, T., Aral, A., Gupta, V., 10.1007/s13373-011-0005-4, Bull. Math. Sci. 1 (2011), 99–113. (2011) Zbl1255.41001MR2823789DOI10.1007/s13373-011-0005-4
  15. Basakov, V. A., An example of a sequence of linear positive operators in the space of continuous functions, Dokl. Akad. Nauk. 131 (1973), 249–251. (1973) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.