Hochschild (co)homology of Yoneda algebras of reconstruction algebras of type
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 4, page 1085-1099
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHou, Bo, and Guo, Yanhong. "Hochschild (co)homology of Yoneda algebras of reconstruction algebras of type ${\mathbf {A}}_{1}$." Czechoslovak Mathematical Journal 65.4 (2015): 1085-1099. <http://eudml.org/doc/276102>.
@article{Hou2015,
abstract = {The reconstruction algebra is a generalization of the preprojective algebra, and plays important roles in algebraic geometry and commutative algebra. We consider the homological property of this class of algebras by calculating the Hochschild homology and Hochschild cohomology. Let $\Lambda _\{t\}$ be the Yoneda algebra of a reconstruction algebra of type $\{\mathbf \{A\}\}_\{1\}$ over a field $. In this paper, a minimal projective bimodule resolution of $t$ is constructed, and the $-dimensions of all Hochschild homology and cohomology groups of $\Lambda _\{t\}$ are calculated explicitly.},
author = {Hou, Bo, Guo, Yanhong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hochschild cohomology; reconstruction algebra; Yoneda algebra},
language = {eng},
number = {4},
pages = {1085-1099},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hochschild (co)homology of Yoneda algebras of reconstruction algebras of type $\{\mathbf \{A\}\}_\{1\}$},
url = {http://eudml.org/doc/276102},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Hou, Bo
AU - Guo, Yanhong
TI - Hochschild (co)homology of Yoneda algebras of reconstruction algebras of type ${\mathbf {A}}_{1}$
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 1085
EP - 1099
AB - The reconstruction algebra is a generalization of the preprojective algebra, and plays important roles in algebraic geometry and commutative algebra. We consider the homological property of this class of algebras by calculating the Hochschild homology and Hochschild cohomology. Let $\Lambda _{t}$ be the Yoneda algebra of a reconstruction algebra of type ${\mathbf {A}}_{1}$ over a field $. In this paper, a minimal projective bimodule resolution of $t$ is constructed, and the $-dimensions of all Hochschild homology and cohomology groups of $\Lambda _{t}$ are calculated explicitly.
LA - eng
KW - Hochschild cohomology; reconstruction algebra; Yoneda algebra
UR - http://eudml.org/doc/276102
ER -
References
top- Avramov, L. L., Vigué-Poirrier, M., 10.1155/S1073792892000035, Int. Math. Res. Not. 1992 (1992), 17-25. (1992) Zbl0755.13006MR1149001DOI10.1155/S1073792892000035
- Beilinson, A., Ginzburg, V., Soergel, W., 10.1090/S0894-0347-96-00192-0, J. Am. Math. Soc. 9 (1996), 473-527. (1996) Zbl0864.17006MR1322847DOI10.1090/S0894-0347-96-00192-0
- Bergh, P. A., Madsen, D., 10.1112/blms/bdp018, Bull. Lond. Math. Soc. 41 (2009), 473-482. (2009) Zbl1207.16006MR2506831DOI10.1112/blms/bdp018
- Brieskorn, E., 10.1007/BF01425318, Invent. Math. 4 German (1968), 336-358. (1968) Zbl0219.14003MR0222084DOI10.1007/BF01425318
- Buchweitz, R.-O., Green, E. L., Madsen, D., Solberg, {Ø., 10.4310/MRL.2005.v12.n6.a2, Math. Res. Lett. 12 (2005), 805-816. (2005) Zbl1138.16003MR2189240DOI10.4310/MRL.2005.v12.n6.a2
- Butler, M. C. R., King, A. D., 10.1006/jabr.1998.7599, J. Algebra 212 (1999), 323-362. (1999) Zbl0926.16006MR1670674DOI10.1006/jabr.1998.7599
- Cartan, H., Eilenberg, S., Homological Algebra, Princeton Mathematical Series, Vol. 19 Princeton University Press 15, Princeton (1956). (1956) Zbl0075.24305MR0077480
- Cibils, C., 10.1016/0001-8708(90)90057-T, Adv. Math. 79 (1990), 18-42. (1990) Zbl0703.16009MR1031825DOI10.1016/0001-8708(90)90057-T
- Gerstenhaber, M., 10.2307/1970484, Ann. Math. (2) 79 (1964), 59-103. (1964) Zbl0123.03101MR0171807DOI10.2307/1970484
- Green, E. L., Noncommutative Gröbner bases, and projective resolutions, Computational Methods for Representations of Groups and Algebras. Proc. of the Euroconf., Essen, Germany, 1997 Progr. Math. 173 Birkhäuser, Basel (1999), 29-60 P. Dr{ä}xler et al. (1999) Zbl0957.16033MR1714602
- Green, E. L., Hartman, G., Marcos, E. N., Solberg, {Ø., 10.1007/s00013-005-1299-9, Arch. Math. 85 (2005), 118-127. (2005) Zbl1096.16011MR2161801DOI10.1007/s00013-005-1299-9
- Green, E., Huang, R. Q., 10.1006/aima.1995.1013, Adv. Math. 110 (1995), 314-333. (1995) Zbl0824.13012MR1317620DOI10.1006/aima.1995.1013
- Han, Y., 10.1112/S002461070602299X, J. Lond. Math. Soc., (2) 73 (2006), 657-668. (2006) Zbl1139.16010MR2241972DOI10.1112/S002461070602299X
- Happel, D., Hochschild cohomology of finite-dimensional algebras, Séminaire D'Algèbre Paul Dubreil et Marie-Paul Malliavin, Proc. of the Seminar, Paris, 1987-1988 Lecture Notes in Math. 1404 Springer, Berlin (1989), 108-126 M. -P. Malliavin. (1989) Zbl0688.16033MR1035222
- Hou, B., Xu, Y., Hochschild (co)homology of -Galois coverings of exterior algebras in two variables, Acta Math. Sin., Chin. Ser. 51 (2008), 241-252. (2008) MR2436288
- Igusa, K., 10.1016/0022-4049(90)90040-O, J. Pure Appl. Algebra 69 (1990), 161-176. (1990) Zbl0772.16007MR1086558DOI10.1016/0022-4049(90)90040-O
- Iyama, O., Wemyss, M., 10.1007/s00209-009-0501-3, Math. Z. 265 (2010), 41-83. (2010) Zbl1192.13012MR2606949DOI10.1007/s00209-009-0501-3
- Loday, J. L., Cyclic Homology, Grundlehren der Mathematischen Wissenschaften 301, Springer Berlin (1992). (1992) Zbl0780.18009MR1217970
- Skowroński, A., Simply connected algebras and Hochschild cohomology, Representations of Algebras. Proc. of the 6. Int. Conf., Carleton University, Ottawa, Canada, 1992, CMS Conf. Proc. 14 AMS, Providence V. Dlab et al. (1993), 431-447. (1993) MR1265301
- Snashall, N., Taillefer, R., 10.1142/S0219498810003781, J. Algebra Appl. 9 (2010), 73-122. (2010) Zbl1266.16006MR2642814DOI10.1142/S0219498810003781
- Wemyss, M., 10.14492/hokmj/1372859589, Hokkaido Math. J. 42 (2013), 293-329. (2013) MR3112460DOI10.14492/hokmj/1372859589
- Wemyss, M., 10.1016/j.jalgebra.2012.01.019, J. Algebra 356 (2012), 158-194. (2012) Zbl1278.16016MR2891127DOI10.1016/j.jalgebra.2012.01.019
- Wemyss, M., 10.1090/S0002-9947-2011-05130-5, Trans. Am. Math. Soc. 363 (2011), 3101-3132. (2011) Zbl1270.16022MR2775800DOI10.1090/S0002-9947-2011-05130-5
- Wemyss, M., The McKay correspondence, Math. Ann. 350 (2011), 631-659. (2011) MR2805639
- Wunram, J., Reflexive modules on cyclic quotient surface singularities, Singularities, Representation of Algebras, and Vector Bundles, Proc. of the Symp., Lambrecht, Germany, 1985 Lecture Notes in Math. 1273 Springer, Berlin (1987), 221-231 G. -M. Greuel et al. (1987) Zbl0638.14006MR0915177
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.