Hochschild (co)homology of Yoneda algebras of reconstruction algebras of type 𝐀 1

Bo Hou; Yanhong Guo

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 4, page 1085-1099
  • ISSN: 0011-4642

Abstract

top
The reconstruction algebra is a generalization of the preprojective algebra, and plays important roles in algebraic geometry and commutative algebra. We consider the homological property of this class of algebras by calculating the Hochschild homology and Hochschild cohomology. Let Λ t be the Yoneda algebra of a reconstruction algebra of type 𝐀 1 over a field . I n t h i s p a p e r , a m i n i m a l p r o j e c t i v e b i m o d u l e r e s o l u t i o n o f t i s c o n s t r u c t e d , a n d t h e -dimensions of all Hochschild homology and cohomology groups of Λ t are calculated explicitly.

How to cite

top

Hou, Bo, and Guo, Yanhong. "Hochschild (co)homology of Yoneda algebras of reconstruction algebras of type ${\mathbf {A}}_{1}$." Czechoslovak Mathematical Journal 65.4 (2015): 1085-1099. <http://eudml.org/doc/276102>.

@article{Hou2015,
abstract = {The reconstruction algebra is a generalization of the preprojective algebra, and plays important roles in algebraic geometry and commutative algebra. We consider the homological property of this class of algebras by calculating the Hochschild homology and Hochschild cohomology. Let $\Lambda _\{t\}$ be the Yoneda algebra of a reconstruction algebra of type $\{\mathbf \{A\}\}_\{1\}$ over a field $. In this paper, a minimal projective bimodule resolution of $t$ is constructed, and the $-dimensions of all Hochschild homology and cohomology groups of $\Lambda _\{t\}$ are calculated explicitly.},
author = {Hou, Bo, Guo, Yanhong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hochschild cohomology; reconstruction algebra; Yoneda algebra},
language = {eng},
number = {4},
pages = {1085-1099},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hochschild (co)homology of Yoneda algebras of reconstruction algebras of type $\{\mathbf \{A\}\}_\{1\}$},
url = {http://eudml.org/doc/276102},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Hou, Bo
AU - Guo, Yanhong
TI - Hochschild (co)homology of Yoneda algebras of reconstruction algebras of type ${\mathbf {A}}_{1}$
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 1085
EP - 1099
AB - The reconstruction algebra is a generalization of the preprojective algebra, and plays important roles in algebraic geometry and commutative algebra. We consider the homological property of this class of algebras by calculating the Hochschild homology and Hochschild cohomology. Let $\Lambda _{t}$ be the Yoneda algebra of a reconstruction algebra of type ${\mathbf {A}}_{1}$ over a field $. In this paper, a minimal projective bimodule resolution of $t$ is constructed, and the $-dimensions of all Hochschild homology and cohomology groups of $\Lambda _{t}$ are calculated explicitly.
LA - eng
KW - Hochschild cohomology; reconstruction algebra; Yoneda algebra
UR - http://eudml.org/doc/276102
ER -

References

top
  1. Avramov, L. L., Vigué-Poirrier, M., 10.1155/S1073792892000035, Int. Math. Res. Not. 1992 (1992), 17-25. (1992) Zbl0755.13006MR1149001DOI10.1155/S1073792892000035
  2. Beilinson, A., Ginzburg, V., Soergel, W., 10.1090/S0894-0347-96-00192-0, J. Am. Math. Soc. 9 (1996), 473-527. (1996) Zbl0864.17006MR1322847DOI10.1090/S0894-0347-96-00192-0
  3. Bergh, P. A., Madsen, D., 10.1112/blms/bdp018, Bull. Lond. Math. Soc. 41 (2009), 473-482. (2009) Zbl1207.16006MR2506831DOI10.1112/blms/bdp018
  4. Brieskorn, E., 10.1007/BF01425318, Invent. Math. 4 German (1968), 336-358. (1968) Zbl0219.14003MR0222084DOI10.1007/BF01425318
  5. Buchweitz, R.-O., Green, E. L., Madsen, D., Solberg, {Ø., 10.4310/MRL.2005.v12.n6.a2, Math. Res. Lett. 12 (2005), 805-816. (2005) Zbl1138.16003MR2189240DOI10.4310/MRL.2005.v12.n6.a2
  6. Butler, M. C. R., King, A. D., 10.1006/jabr.1998.7599, J. Algebra 212 (1999), 323-362. (1999) Zbl0926.16006MR1670674DOI10.1006/jabr.1998.7599
  7. Cartan, H., Eilenberg, S., Homological Algebra, Princeton Mathematical Series, Vol. 19 Princeton University Press 15, Princeton (1956). (1956) Zbl0075.24305MR0077480
  8. Cibils, C., 10.1016/0001-8708(90)90057-T, Adv. Math. 79 (1990), 18-42. (1990) Zbl0703.16009MR1031825DOI10.1016/0001-8708(90)90057-T
  9. Gerstenhaber, M., 10.2307/1970484, Ann. Math. (2) 79 (1964), 59-103. (1964) Zbl0123.03101MR0171807DOI10.2307/1970484
  10. Green, E. L., Noncommutative Gröbner bases, and projective resolutions, Computational Methods for Representations of Groups and Algebras. Proc. of the Euroconf., Essen, Germany, 1997 Progr. Math. 173 Birkhäuser, Basel (1999), 29-60 P. Dr{ä}xler et al. (1999) Zbl0957.16033MR1714602
  11. Green, E. L., Hartman, G., Marcos, E. N., Solberg, {Ø., 10.1007/s00013-005-1299-9, Arch. Math. 85 (2005), 118-127. (2005) Zbl1096.16011MR2161801DOI10.1007/s00013-005-1299-9
  12. Green, E., Huang, R. Q., 10.1006/aima.1995.1013, Adv. Math. 110 (1995), 314-333. (1995) Zbl0824.13012MR1317620DOI10.1006/aima.1995.1013
  13. Han, Y., 10.1112/S002461070602299X, J. Lond. Math. Soc., (2) 73 (2006), 657-668. (2006) Zbl1139.16010MR2241972DOI10.1112/S002461070602299X
  14. Happel, D., Hochschild cohomology of finite-dimensional algebras, Séminaire D'Algèbre Paul Dubreil et Marie-Paul Malliavin, Proc. of the Seminar, Paris, 1987-1988 Lecture Notes in Math. 1404 Springer, Berlin (1989), 108-126 M. -P. Malliavin. (1989) Zbl0688.16033MR1035222
  15. Hou, B., Xu, Y., Hochschild (co)homology of n -Galois coverings of exterior algebras in two variables, Acta Math. Sin., Chin. Ser. 51 (2008), 241-252. (2008) MR2436288
  16. Igusa, K., 10.1016/0022-4049(90)90040-O, J. Pure Appl. Algebra 69 (1990), 161-176. (1990) Zbl0772.16007MR1086558DOI10.1016/0022-4049(90)90040-O
  17. Iyama, O., Wemyss, M., 10.1007/s00209-009-0501-3, Math. Z. 265 (2010), 41-83. (2010) Zbl1192.13012MR2606949DOI10.1007/s00209-009-0501-3
  18. Loday, J. L., Cyclic Homology, Grundlehren der Mathematischen Wissenschaften 301, Springer Berlin (1992). (1992) Zbl0780.18009MR1217970
  19. Skowroński, A., Simply connected algebras and Hochschild cohomology, Representations of Algebras. Proc. of the 6. Int. Conf., Carleton University, Ottawa, Canada, 1992, CMS Conf. Proc. 14 AMS, Providence V. Dlab et al. (1993), 431-447. (1993) MR1265301
  20. Snashall, N., Taillefer, R., 10.1142/S0219498810003781, J. Algebra Appl. 9 (2010), 73-122. (2010) Zbl1266.16006MR2642814DOI10.1142/S0219498810003781
  21. Wemyss, M., 10.14492/hokmj/1372859589, Hokkaido Math. J. 42 (2013), 293-329. (2013) MR3112460DOI10.14492/hokmj/1372859589
  22. Wemyss, M., 10.1016/j.jalgebra.2012.01.019, J. Algebra 356 (2012), 158-194. (2012) Zbl1278.16016MR2891127DOI10.1016/j.jalgebra.2012.01.019
  23. Wemyss, M., 10.1090/S0002-9947-2011-05130-5, Trans. Am. Math. Soc. 363 (2011), 3101-3132. (2011) Zbl1270.16022MR2775800DOI10.1090/S0002-9947-2011-05130-5
  24. Wemyss, M., The G L ( 2 , ) McKay correspondence, Math. Ann. 350 (2011), 631-659. (2011) MR2805639
  25. Wunram, J., Reflexive modules on cyclic quotient surface singularities, Singularities, Representation of Algebras, and Vector Bundles, Proc. of the Symp., Lambrecht, Germany, 1985 Lecture Notes in Math. 1273 Springer, Berlin (1987), 221-231 G. -M. Greuel et al. (1987) Zbl0638.14006MR0915177

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.