Poset-valued preference relations
Vladimír Janiš; Susana Montes; Branimir Šešelja; Andreja Tepavčević
Kybernetika (2015)
- Volume: 51, Issue: 5, page 747-764
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topJaniš, Vladimír, et al. "Poset-valued preference relations." Kybernetika 51.5 (2015): 747-764. <http://eudml.org/doc/276117>.
@article{Janiš2015,
abstract = {In decision processes some objects may not be comparable with respect to a preference relation, especially if several criteria are considered. To provide a model for such cases a poset valued preference relation is introduced as a fuzzy relation on a set of alternatives with membership values in a partially ordered set. We analyze its properties and prove the representation theorem in terms of particular order reversing involution on the co-domain poset. We prove that for every set of alternatives there is a poset valued preference whose cut relations are all relations on this domain. We also deal with particular transitivity of such preferences.},
author = {Janiš, Vladimír, Montes, Susana, Šešelja, Branimir, Tepavčević, Andreja},
journal = {Kybernetika},
keywords = {relation; poset; order reversing involutions; weakly orthogonal poset; transitivity},
language = {eng},
number = {5},
pages = {747-764},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Poset-valued preference relations},
url = {http://eudml.org/doc/276117},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Janiš, Vladimír
AU - Montes, Susana
AU - Šešelja, Branimir
AU - Tepavčević, Andreja
TI - Poset-valued preference relations
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 5
SP - 747
EP - 764
AB - In decision processes some objects may not be comparable with respect to a preference relation, especially if several criteria are considered. To provide a model for such cases a poset valued preference relation is introduced as a fuzzy relation on a set of alternatives with membership values in a partially ordered set. We analyze its properties and prove the representation theorem in terms of particular order reversing involution on the co-domain poset. We prove that for every set of alternatives there is a poset valued preference whose cut relations are all relations on this domain. We also deal with particular transitivity of such preferences.
LA - eng
KW - relation; poset; order reversing involutions; weakly orthogonal poset; transitivity
UR - http://eudml.org/doc/276117
ER -
References
top- Bezdek, J., Spillman, B., Spillman, R., 10.1016/0165-0114(78)90017-9, Fuzzy Sets Systems 1 (1978), 255-268. Zbl0398.90009MR0508976DOI10.1016/0165-0114(78)90017-9
- Birkhoff, G., Lattice Theory. (Third edition., AMS Colloquium Publications, Vol. XXV, 1967. MR0227053
- Chajda, I., 10.1007/s00500-013-1047-1, Soft Computing 18 (2013), 1, 1-4). DOI10.1007/s00500-013-1047-1
- Cignoli, R., Esteva, F., 10.1016/j.apal.2009.05.008, Annals of Pure and Applied Logic 161 (2009), 2, 150-160. Zbl1181.03061MR2552735DOI10.1016/j.apal.2009.05.008
- Dasgupta, M., Deb, R., 10.1007/bf00187373, Soc. Choice Welfare 8 (1991), 2, 171-182. Zbl0717.90004MR1115895DOI10.1007/bf00187373
- David, H., The Method of Paired Comparisons., Griffin's Statistical Monographs and Courses, Vol. 12, Charles Griffin and D. Ltd., 1963. Zbl0665.62075MR0174105
- Baets, B. De, Meyer, H. De, Transitivity frameworks for reciprocal relations: cycle-transitivity versus FG-transitivity., Fuzzy Sets and Systems 152 (2005), 2, 249-270. Zbl1114.91031MR2138509
- Baets, B. De, Meyer, H. De, Schuymer, B. De, 10.1016/j.fss.2004.11.002, Social Choice and Welfare 26 (2006), 217-238. Zbl1158.91338MR2226508DOI10.1016/j.fss.2004.11.002
- Doignon, J.-P., Monjardet, B., Roubens, M., Vincke, Ph., 10.1016/0022-2496(86)90020-9, J. Math. Psych. 30 (1986), 435-480. Zbl0612.92020MR0868774DOI10.1016/0022-2496(86)90020-9
- Dutta, B., Laslier, J.F., 10.1007/s003550050158, Soc. Choice Welfare 16 (1999), 513-532. Zbl1066.91535MR1713186DOI10.1007/s003550050158
- Fan, Z.-P., X, X. Chen, 10.1007/11539506_16, Lecture Notes in Artificial Intelligence, Springer-Verlag 3613 (2005), 130-139. DOI10.1007/11539506_16
- Fan, Z.-P., Jiang, Y. P., A judgment method for the satisfying consistency of linguistic judgment matrix., Control and Decision 19 (2004), 903-906.
- Fishburn, P. C., 10.1016/0022-2496(73)90021-7, J. Math. Psychology 10 (1973), 327-352. Zbl0277.92008MR0327330DOI10.1016/0022-2496(73)90021-7
- Flachsmeyer, J., Note on orthocomplemented posets II., In: Proc. 10th Winter School on Abstract Analysis (Z. Frolík, ed.), Circolo Matematico di Palermo, Palermo 1982. pp. 67-74. Zbl0535.06003MR0683769
- Fodor, J., Roubens, M., 10.1007/978-94-017-1648-2, Kluwer Academic Publishers 1994. Zbl0827.90002DOI10.1007/978-94-017-1648-2
- García-Lapresta, J., Llamazares, B., 10.1007/s003550000048, Soc. Choice Welfare 17 (2000), 673-690. Zbl1069.91518MR1778698DOI10.1007/s003550000048
- García-Lapresta, J., Llamazares, B., 10.1016/s0304-4068(01)00055-6, J. Math. Economics 35 (2001), 463-481. Zbl0987.91022MR1838607DOI10.1016/s0304-4068(01)00055-6
- Goguen, J. A., 10.1016/0022-247x(67)90189-8, J. Math. Anal. Appl. 18 (1967), 145-174. Zbl0145.24404MR0224391DOI10.1016/0022-247x(67)90189-8
- Herrera, F., 10.1016/0020-0255(95)00025-k, Inform. Sci. 85 (1995), 223-239. DOI10.1016/0020-0255(95)00025-k
- Herrera, F., Herrera-Viedma, E., 10.1016/s0165-0114(99)00024-x, Fuzzy Sets and Systems 115 (2000), 67-82. Zbl1073.91528MR1776304DOI10.1016/s0165-0114(99)00024-x
- Herrera, F., Martínez, L., 10.1109/91.890332, IEEE Transactions on Fuzzy Systems 8 (2000), 746-752. MR1784646DOI10.1109/91.890332
- Herrera, F., Herrera-Viedma, E., Mart{í}nez, L., 10.1016/s0165-0114(98)00093-1, Fuzzy Sets and Systems 114 (2000), 43-58. MR1776304DOI10.1016/s0165-0114(98)00093-1
- Herrera, F., Herrera-Viedma, E., Verdegay, J. L., 10.1016/0165-0114(95)00107-7, Fuzzy Sets and Systems 78 (1996), 73-87. MR1376216DOI10.1016/0165-0114(95)00107-7
- Herrera, F., Herrera-Viedma, E., Verdegay, J. L., 10.1016/0165-0114(95)00162-x, Fuzzy Sets and Systems 79 (1996), 175-190. Zbl0870.90007MR1388390DOI10.1016/0165-0114(95)00162-x
- Herrera-Viedma, E., Herrera, F., Chiclana, F., 10.1109/tsmca.2002.802821, IEEE Trans. Systems, Man and Cybernetics 32 (2002), 394-402. DOI10.1109/tsmca.2002.802821
- Kacprzyk, J., Fedrizzi, M., Nurmi, H., 10.1016/0165-0114(92)90107-f, Fuzzy Sets and Systems 49 (1992), 21-31. Zbl0768.90003MR1177944DOI10.1016/0165-0114(92)90107-f
- Kacprzyk, J., Nurmi, H., (eds.), M. Fedrizzi, Consensus under Fuzziness., Kluwer Academic Publishers, Boston 1996. Zbl0882.00024
- Klement, E. P., Mesiar, R., Pap, E., 10.1007/978-94-015-9540-7, Kluwer Academic Publishers, Boston - London - Dordrecht 2000. Zbl1087.20041MR1790096DOI10.1007/978-94-015-9540-7
- Lahiri, S., 10.1016/s0165-0114(01)00240-8, Fuzzy Sets and Systems 132 (2002), 77-82. Zbl1042.91016MR1936216DOI10.1016/s0165-0114(01)00240-8
- Menger, K., 10.1073/pnas.37.3.178, Proc. Nat. Acad. Sci. (Math.) 37 (1951), 178-180. Zbl0042.37103MR0042080DOI10.1073/pnas.37.3.178
- Monjardet, B., 10.1007/978-3-642-51711-2_3, In: Non-conventional Preference Relations in Decision Making (J. Kacprzyk and M. Roubens, eds.), Lecture Notes in Economics and Mathematical Systems, Vol. 301, Springer-Verlag, 1988. MR1133647DOI10.1007/978-3-642-51711-2_3
- Nurmi, H., 10.1016/0165-0114(81)90003-8, Fuzzy Sets Systems 6 (1981), 249-259. Zbl0465.90006MR0635346DOI10.1016/0165-0114(81)90003-8
- Nurmi, H., 10.1007/978-94-009-3985-1, Reidel, Dordrecht 1987. DOI10.1007/978-94-009-3985-1
- Ovchinnikov, S., 10.1016/0165-0114(91)90048-u, Fuzzy Sets and Systems 40 (1991), 1, 107-126. Zbl0725.04003MR1103658DOI10.1016/0165-0114(91)90048-u
- Pták, P., Pulmannová, P., Orthomodular Structures as Quantum Logics., Kluwer Academic Publishers, Dordrecht 1991. Zbl0743.03039MR1176314
- Roberts, F., 10.1016/0022-2496(71)90016-2, J. Math. Psych. 8 (1971), 248-263. Zbl0223.92017MR0292534DOI10.1016/0022-2496(71)90016-2
- Roubens, M., Vincke, Ph., 10.1007/978-3-642-46550-5, Springer-Verlag, Berlin 1985. Zbl0612.92020MR0809182DOI10.1007/978-3-642-46550-5
- Šešelja, B., Tepavčević, A., On a construction of codes by -fuzzy sets., Review of Research, Fac. of Sci., Univ. of Novi Sad, Math. Ser. 20 2 (1990), 71-80. Zbl0749.94027MR1158427
- Šešelja, B., Tepavčević, A., 10.1016/0165-0114(94)00352-8, Fuzzy Sets and Systems 72 (1995), 2, 205-213. Zbl0844.04008MR1335535DOI10.1016/0165-0114(94)00352-8
- Šešelja, B., Tepavčević, A., 10.1016/s0165-0114(02)00365-2, Fuzzy Sets and Systems 136 (2003), 1-19. Zbl1020.06005MR1978466DOI10.1016/s0165-0114(02)00365-2
- Šeselja, B., Tepavčević, A., 10.1016/s0165-0114(02)00366-4, Fuzzy Sets and Systems 136 (2003), 21-39. Zbl1026.03039MR1978467DOI10.1016/s0165-0114(02)00366-4
- Switalski, Z., 10.1016/s0165-0114(97)00313-8, Fuzzy Sets and Systems 107 (1999), 187-190. Zbl0938.91019MR1702851DOI10.1016/s0165-0114(97)00313-8
- Yager, R. R., 10.1016/0888-613x(94)00035-2, Int. J. Approx. Reasoning 12 (1995), 237-261. Zbl0870.68137MR1327857DOI10.1016/0888-613x(94)00035-2
- Zadeh, L. A., 10.1016/s0019-9958(65)90241-x, Information and Control 8 (1965), 338-353. Zbl0942.00007MR0219427DOI10.1016/s0019-9958(65)90241-x
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.