On the composition structure of the twisted Verma modules for
Archivum Mathematicum (2015)
- Volume: 051, Issue: 5, page 315-329
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKřižka, Libor, and Somberg, Petr. "On the composition structure of the twisted Verma modules for $\mathfrak {sl}(3,\mathbb {C})$." Archivum Mathematicum 051.5 (2015): 315-329. <http://eudml.org/doc/276135>.
@article{Křižka2015,
abstract = {We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra $\mathfrak \{sl\}(3, \mathbb \{C\})$, including the explicit structure of singular vectors for both $\mathfrak \{sl\}(3, \mathbb \{C\})$ and one of its Lie subalgebras $\mathfrak \{sl\}(2, \mathbb \{C\})$, and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as $\{D\}$-modules on the Schubert cells in the full flag manifold for $\mathop \{\rm SL\} \nolimits (3, \mathbb \{C\})$.},
author = {Křižka, Libor, Somberg, Petr},
journal = {Archivum Mathematicum},
keywords = {Lie algebra $\mathfrak \{sl\}(3,\mathbb \{C\})$; twisted Verma modules; composition structure; $\mathcal \{D\}$-modules; composition structure; twisted Verma module; simple highest weight module; BGG category; Lie algebra $\mathfrak \{sl\}(3,\mathbb \{C\})$},
language = {eng},
number = {5},
pages = {315-329},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the composition structure of the twisted Verma modules for $\mathfrak \{sl\}(3,\mathbb \{C\})$},
url = {http://eudml.org/doc/276135},
volume = {051},
year = {2015},
}
TY - JOUR
AU - Křižka, Libor
AU - Somberg, Petr
TI - On the composition structure of the twisted Verma modules for $\mathfrak {sl}(3,\mathbb {C})$
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 5
SP - 315
EP - 329
AB - We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra $\mathfrak {sl}(3, \mathbb {C})$, including the explicit structure of singular vectors for both $\mathfrak {sl}(3, \mathbb {C})$ and one of its Lie subalgebras $\mathfrak {sl}(2, \mathbb {C})$, and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as ${D}$-modules on the Schubert cells in the full flag manifold for $\mathop {\rm SL} \nolimits (3, \mathbb {C})$.
LA - eng
KW - Lie algebra $\mathfrak {sl}(3,\mathbb {C})$; twisted Verma modules; composition structure; $\mathcal {D}$-modules; composition structure; twisted Verma module; simple highest weight module; BGG category; Lie algebra $\mathfrak {sl}(3,\mathbb {C})$
UR - http://eudml.org/doc/276135
ER -
References
top- Abe, N., 10.1016/j.jalgebra.2010.11.012, J. Algebra 330 (1) (2011), 468–481. (2011) Zbl1220.22011MR2774640DOI10.1016/j.jalgebra.2010.11.012
- Andersen, H.H., Lauritzen, N., Twisted Verma modules, Studies in Memory of Issai Schur, Progress in Mathematics, vol. 210, Birkhäuser, Boston, 2003, pp. 1–26. (2003) Zbl1079.17002MR1985191
- Beilinson, A.A., Bernstein, J.N., Localisation de -modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15–18. (1981) MR0610137
- Feigin, B.L., Frenkel, E.V., 10.1007/BF02097051, Comm. Math. Phys. 128 (1) (1990), 161–189. (1990) Zbl0722.17019MR1042449DOI10.1007/BF02097051
- Fischer, E., Über die Differentiationsprozesse der Algebra, J. Reine Angew. Math. 148 (1918), 1–78. (1918) MR1580952
- Frenkel, E.V., Ben-Zvi, D., Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, vol. 88, Amer. Math. Soc. Providence, 2004. (2004) Zbl1106.17035MR2082709
- Hotta, R., Takeuchi, K., Tanisaki, T., -Modules, Perverse Sheaves, and Representation Theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, 2008. (2008) MR2357361
- Humphreys, J.E., Representations of Semisimple Lie Algebras in the BGG Category , Graduate Studies in Mathematics, Amer. Math. soc. Providence, 2008. (2008) MR2428237
- Kashiwara, M., Representaion theory and -modules on flag varieties, Astérisque 173–174 (1989), 55–109. (1989) MR1021510
- Kobayashi, T., 10.1007/s00031-012-9180-y, Transform. Groups 17 (2) (2012), 523–546. (2012) Zbl1257.22014MR2921076DOI10.1007/s00031-012-9180-y
- Kobayashi, T., Ørsted, B., Somberg, P., Souček, V., Branching laws for Verma modules and applications in parabolic geometry. I, Adv. Math. 285 (2015), 1–57. (2015) Zbl1327.53044MR3406542
- Křižka, L., Somberg, P., Algebraic analysis on scalar generalized Verma modules of Heisenberg parabolic type I.: -series, (2015) arXiv:1502.07095.
- Mazorchuk, V., Stroppel, C., 10.1090/S0002-9947-04-03650-5, Trans. Amer. Math. Soc. 357 (2005), 2939–2973. (2005) Zbl1095.17001MR2139933DOI10.1090/S0002-9947-04-03650-5
- Soergel, W., 10.1090/S1088-4165-98-00057-0, Represent. Theory 2 (1998), 432–448. (1998) Zbl0964.17018MR1663141DOI10.1090/S1088-4165-98-00057-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.