On the composition structure of the twisted Verma modules for 𝔰𝔩 ( 3 , )

Libor Křižka; Petr Somberg

Archivum Mathematicum (2015)

  • Volume: 051, Issue: 5, page 315-329
  • ISSN: 0044-8753

Abstract

top
We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra 𝔰𝔩 ( 3 , ) , including the explicit structure of singular vectors for both 𝔰𝔩 ( 3 , ) and one of its Lie subalgebras 𝔰𝔩 ( 2 , ) , and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as D -modules on the Schubert cells in the full flag manifold for SL ( 3 , ) .

How to cite

top

Křižka, Libor, and Somberg, Petr. "On the composition structure of the twisted Verma modules for $\mathfrak {sl}(3,\mathbb {C})$." Archivum Mathematicum 051.5 (2015): 315-329. <http://eudml.org/doc/276135>.

@article{Křižka2015,
abstract = {We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra $\mathfrak \{sl\}(3, \mathbb \{C\})$, including the explicit structure of singular vectors for both $\mathfrak \{sl\}(3, \mathbb \{C\})$ and one of its Lie subalgebras $\mathfrak \{sl\}(2, \mathbb \{C\})$, and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as $\{D\}$-modules on the Schubert cells in the full flag manifold for $\mathop \{\rm SL\} \nolimits (3, \mathbb \{C\})$.},
author = {Křižka, Libor, Somberg, Petr},
journal = {Archivum Mathematicum},
keywords = {Lie algebra $\mathfrak \{sl\}(3,\mathbb \{C\})$; twisted Verma modules; composition structure; $\mathcal \{D\}$-modules; composition structure; twisted Verma module; simple highest weight module; BGG category; Lie algebra $\mathfrak \{sl\}(3,\mathbb \{C\})$},
language = {eng},
number = {5},
pages = {315-329},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the composition structure of the twisted Verma modules for $\mathfrak \{sl\}(3,\mathbb \{C\})$},
url = {http://eudml.org/doc/276135},
volume = {051},
year = {2015},
}

TY - JOUR
AU - Křižka, Libor
AU - Somberg, Petr
TI - On the composition structure of the twisted Verma modules for $\mathfrak {sl}(3,\mathbb {C})$
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 5
SP - 315
EP - 329
AB - We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra $\mathfrak {sl}(3, \mathbb {C})$, including the explicit structure of singular vectors for both $\mathfrak {sl}(3, \mathbb {C})$ and one of its Lie subalgebras $\mathfrak {sl}(2, \mathbb {C})$, and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as ${D}$-modules on the Schubert cells in the full flag manifold for $\mathop {\rm SL} \nolimits (3, \mathbb {C})$.
LA - eng
KW - Lie algebra $\mathfrak {sl}(3,\mathbb {C})$; twisted Verma modules; composition structure; $\mathcal {D}$-modules; composition structure; twisted Verma module; simple highest weight module; BGG category; Lie algebra $\mathfrak {sl}(3,\mathbb {C})$
UR - http://eudml.org/doc/276135
ER -

References

top
  1. Abe, N., 10.1016/j.jalgebra.2010.11.012, J. Algebra 330 (1) (2011), 468–481. (2011) Zbl1220.22011MR2774640DOI10.1016/j.jalgebra.2010.11.012
  2. Andersen, H.H., Lauritzen, N., Twisted Verma modules, Studies in Memory of Issai Schur, Progress in Mathematics, vol. 210, Birkhäuser, Boston, 2003, pp. 1–26. (2003) Zbl1079.17002MR1985191
  3. Beilinson, A.A., Bernstein, J.N., Localisation de 𝔤 -modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), 15–18. (1981) MR0610137
  4. Feigin, B.L., Frenkel, E.V., 10.1007/BF02097051, Comm. Math. Phys. 128 (1) (1990), 161–189. (1990) Zbl0722.17019MR1042449DOI10.1007/BF02097051
  5. Fischer, E., Über die Differentiationsprozesse der Algebra, J. Reine Angew. Math. 148 (1918), 1–78. (1918) MR1580952
  6. Frenkel, E.V., Ben-Zvi, D., Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, vol. 88, Amer. Math. Soc. Providence, 2004. (2004) Zbl1106.17035MR2082709
  7. Hotta, R., Takeuchi, K., Tanisaki, T., 𝒟 -Modules, Perverse Sheaves, and Representation Theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, 2008. (2008) MR2357361
  8. Humphreys, J.E., Representations of Semisimple Lie Algebras in the BGG Category 𝒪 , Graduate Studies in Mathematics, Amer. Math. soc. Providence, 2008. (2008) MR2428237
  9. Kashiwara, M., Representaion theory and 𝒟 -modules on flag varieties, Astérisque 173–174 (1989), 55–109. (1989) MR1021510
  10. Kobayashi, T., 10.1007/s00031-012-9180-y, Transform. Groups 17 (2) (2012), 523–546. (2012) Zbl1257.22014MR2921076DOI10.1007/s00031-012-9180-y
  11. Kobayashi, T., Ørsted, B., Somberg, P., Souček, V., Branching laws for Verma modules and applications in parabolic geometry. I, Adv. Math. 285 (2015), 1–57. (2015) Zbl1327.53044MR3406542
  12. Křižka, L., Somberg, P., Algebraic analysis on scalar generalized Verma modules of Heisenberg parabolic type I.: A n -series, (2015) arXiv:1502.07095. 
  13. Mazorchuk, V., Stroppel, C., 10.1090/S0002-9947-04-03650-5, Trans. Amer. Math. Soc. 357 (2005), 2939–2973. (2005) Zbl1095.17001MR2139933DOI10.1090/S0002-9947-04-03650-5
  14. Soergel, W., 10.1090/S1088-4165-98-00057-0, Represent. Theory 2 (1998), 432–448. (1998) Zbl0964.17018MR1663141DOI10.1090/S1088-4165-98-00057-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.