The Morse-Sard-Brown Theorem for Functionals on Bounded Fréchet-Finsler Manifolds
Communications in Mathematics (2015)
- Volume: 23, Issue: 2, page 101-112
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topEftekharinasab, Kaveh. "The Morse-Sard-Brown Theorem for Functionals on Bounded Fréchet-Finsler Manifolds." Communications in Mathematics 23.2 (2015): 101-112. <http://eudml.org/doc/276139>.
@article{Eftekharinasab2015,
abstract = {In this paper we study Lipschitz-Fredholm vector fields on bounded Fréchet-Finsler manifolds. In this context we generalize the Morse-Sard-Brown theorem, asserting that if $M$ is a connected smooth bounded Fréchet-Finsler manifold endowed with a connection $\mathcal \{K\}$ and if $\xi $ is a smooth Lipschitz-Fredholm vector field on $M$ with respect to $\mathcal \{K\}$ which satisfies condition (WCV), then, for any smooth functional $l$ on $M$ which is associated to $\xi $, the set of the critical values of $l$ is of first category in $\mathbb \{R\}$. Therefore, the set of the regular values of $l$ is a residual Baire subset of $\mathbb \{R\}$.},
author = {Eftekharinasab, Kaveh},
journal = {Communications in Mathematics},
keywords = {Fréchet manifolds; condition (CV); Finsler structures; Fredholm vector fields; Fréchet manifolds; condition (CV); Finsler structures; Fredholm vector fields},
language = {eng},
number = {2},
pages = {101-112},
publisher = {University of Ostrava},
title = {The Morse-Sard-Brown Theorem for Functionals on Bounded Fréchet-Finsler Manifolds},
url = {http://eudml.org/doc/276139},
volume = {23},
year = {2015},
}
TY - JOUR
AU - Eftekharinasab, Kaveh
TI - The Morse-Sard-Brown Theorem for Functionals on Bounded Fréchet-Finsler Manifolds
JO - Communications in Mathematics
PY - 2015
PB - University of Ostrava
VL - 23
IS - 2
SP - 101
EP - 112
AB - In this paper we study Lipschitz-Fredholm vector fields on bounded Fréchet-Finsler manifolds. In this context we generalize the Morse-Sard-Brown theorem, asserting that if $M$ is a connected smooth bounded Fréchet-Finsler manifold endowed with a connection $\mathcal {K}$ and if $\xi $ is a smooth Lipschitz-Fredholm vector field on $M$ with respect to $\mathcal {K}$ which satisfies condition (WCV), then, for any smooth functional $l$ on $M$ which is associated to $\xi $, the set of the critical values of $l$ is of first category in $\mathbb {R}$. Therefore, the set of the regular values of $l$ is a residual Baire subset of $\mathbb {R}$.
LA - eng
KW - Fréchet manifolds; condition (CV); Finsler structures; Fredholm vector fields; Fréchet manifolds; condition (CV); Finsler structures; Fredholm vector fields
UR - http://eudml.org/doc/276139
ER -
References
top- Bejan, C.L., Finsler structures on Fréchet bundles, Proc. 3-rd Seminar on Finsler spaces, Univ. Braşov 1984, 1984, 49-54, Societatea de ştiinţe Matematice Romania, Bucharest, (1984) MR0823295
- Dodson, C.T.J., Some recent work in Fréchet geometry, Balkan J. Geometry and Its Applications, 17, 2, 2012, 6-21, (2012) Zbl1286.58004MR2911963
- Eftekharinasab, K., 10.1007/s11253-011-0478-z, Ukrainian Math. J., 62, 12, 2011, 1896-1905, (2011) MR2958816DOI10.1007/s11253-011-0478-z
- Eftekharinasab, K., Geometry of Bounded Fréchet Manifolds, Rocky Mountain J. Math., to appear,
- Eliasson, H., 10.4310/jdg/1214427887, J. Differential Geometry, 1, 1967, 169-194, (1967) Zbl0163.43901MR0226681DOI10.4310/jdg/1214427887
- Glöckner, H., Implicit functions from topological vector spaces in the presence of metric estimates, preprint, Arxiv:math/6612673, 2006, (2006) MR2269430
- Hamilton, R.S., 10.1090/S0273-0979-1982-15004-2, Bulletin of the AMS, 7, 1982, 65-222, (1982) Zbl0499.58003MR0656198DOI10.1090/S0273-0979-1982-15004-2
- Müller, O., 10.1016/j.geomphys.2008.06.004, Journal of Geometry and Physics, 58, 11, 2008, 1477-1500, (2008) Zbl1155.58002MR2463806DOI10.1016/j.geomphys.2008.06.004
- Palais, R.S., 10.1016/0040-9383(66)90013-9, Topology, 5, 2, 1966, 115-132, (1966) Zbl0143.35203MR0259955DOI10.1016/0040-9383(66)90013-9
- Palais, R.S., 10.1090/pspum/015/0264712, Proc. Symp. Pur. Math., 15, 1970, 185-212, (1970) Zbl0212.28902MR0264712DOI10.1090/pspum/015/0264712
- Tromba, A.J., A general approach to Morse theory, J. Differential Geometry, 12, 1, 1977, 47-85, Lehigh University, (1977) Zbl0344.58012MR0464304
- Tromba, A.J., 10.2307/2374024, Amer. J. Math., 99, 1977, 1251-1256, (1977) Zbl0373.58003MR0464285DOI10.2307/2374024
- Tromba, A.J., 10.1016/0001-8708(78)90061-0, Advances in Mathematics, 28, 2, 1978, 148-173, (1978) Zbl0383.58001MR0493919DOI10.1016/0001-8708(78)90061-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.