On complete linear Weingarten hypersurfaces in locally symmetric Riemannian manifolds
Cícero P. Aquino; Henrique F. de Lima; Fábio R. dos Santos; Marco Antonio L. Velásquez
Commentationes Mathematicae Universitatis Carolinae (2015)
- Volume: 56, Issue: 4, page 515-529
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAquino, Cícero P., et al. "On complete linear Weingarten hypersurfaces in locally symmetric Riemannian manifolds." Commentationes Mathematicae Universitatis Carolinae 56.4 (2015): 515-529. <http://eudml.org/doc/276197>.
@article{Aquino2015,
abstract = {Our aim is to apply suitable generalized maximum principles in order to obtain characterization results concerning complete linear Weingarten hypersurfaces immersed in a locally symmetric Riemannian manifold, whose sectional curvature is supposed to obey standard constraints. In this setting, we establish sufficient conditions to guarantee that such a hypersurface must be either totally umbilical or an isoparametric hypersurface with two distinct principal curvatures one of which is simple.},
author = {Aquino, Cícero P., de Lima, Henrique F., dos Santos, Fábio R., Velásquez, Marco Antonio L.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {locally symmetric Riemannian manifolds; Einstein manifolds; complete linear Weingarten hypersurfaces; totally umbilical hypersurfaces; isoparametric hypersurfaces},
language = {eng},
number = {4},
pages = {515-529},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On complete linear Weingarten hypersurfaces in locally symmetric Riemannian manifolds},
url = {http://eudml.org/doc/276197},
volume = {56},
year = {2015},
}
TY - JOUR
AU - Aquino, Cícero P.
AU - de Lima, Henrique F.
AU - dos Santos, Fábio R.
AU - Velásquez, Marco Antonio L.
TI - On complete linear Weingarten hypersurfaces in locally symmetric Riemannian manifolds
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 4
SP - 515
EP - 529
AB - Our aim is to apply suitable generalized maximum principles in order to obtain characterization results concerning complete linear Weingarten hypersurfaces immersed in a locally symmetric Riemannian manifold, whose sectional curvature is supposed to obey standard constraints. In this setting, we establish sufficient conditions to guarantee that such a hypersurface must be either totally umbilical or an isoparametric hypersurface with two distinct principal curvatures one of which is simple.
LA - eng
KW - locally symmetric Riemannian manifolds; Einstein manifolds; complete linear Weingarten hypersurfaces; totally umbilical hypersurfaces; isoparametric hypersurfaces
UR - http://eudml.org/doc/276197
ER -
References
top- Alencar H., do Carmo M., 10.1090/S0002-9939-1994-1172943-2, Proc. Amer. Math. Soc. 120 (1994), 1223–1229. Zbl0802.53017MR1172943DOI10.1090/S0002-9939-1994-1172943-2
- Alías L.J., de Lira J.H.S., Malacarne J.M., 10.1017/S1474748006000077, J. Inst. Math. Jussieu 5 (2006), 527–562. Zbl1118.53038MR2261223DOI10.1017/S1474748006000077
- Alías L.J., García-Martínez S.C., 10.1016/j.jmaa.2009.09.045, J. Math. Anal. Appl. 363 (2010), 579–587. Zbl1182.53052MR2564877DOI10.1016/j.jmaa.2009.09.045
- Alías L.J., García-Martínez S.C., Rigoli M., 10.1007/s10455-011-9284-y, Ann. Glob. Anal. Geom. 41 (2012), 307–320. Zbl1237.53044MR2886200DOI10.1007/s10455-011-9284-y
- Alías L.J., Impera D., Rigoli M., 10.1090/S0002-9947-2012-05774-6, Trans. Amer. Math. Soc. 365 (2013), 591–621. Zbl1276.53064MR2995367DOI10.1090/S0002-9947-2012-05774-6
- Aquino C.P., de Lima H.F., Velásquez M.A.L., 10.2140/pjm.2013.261.33, Pacific J. Math. 261 (2013), 33–43. Zbl1273.53051MR3037557DOI10.2140/pjm.2013.261.33
- Brasil A. Jr., Colares A.G., Palmas O., 10.1007/s00605-009-0128-9, Monatsh. Math. 161 (2010), 369–380. Zbl1201.53068MR2734966DOI10.1007/s00605-009-0128-9
- Caminha A., 10.2996/kmj/1151936435, Kodai Math. J. 29 (2006), 185–210. Zbl1107.53037MR2247430DOI10.2996/kmj/1151936435
- Caminha A., 10.1007/s00574-011-0015-6, Bull. Braz. Math. Soc. 42 (2011), 277–300. Zbl1242.53068MR2833803DOI10.1007/s00574-011-0015-6
- Cheng S.Y., Yau S.T., 10.1007/BF01425237, Math. Ann. 225 (1977), 195–204. Zbl0349.53041MR0431043DOI10.1007/BF01425237
- L. Karp, On Stokes' theorem for noncompact manifolds, Proc. American Math. Soc. 82 (1981), 487–490. Zbl0471.31004MR0612746
- Li H., Suh Y.J., Wei G., 10.4134/BKMS.2009.46.2.321, Bull. Korean Math. Soc. 46 (2009), 321–329. MR2502796DOI10.4134/BKMS.2009.46.2.321
- Okumura M., 10.2307/2373587, Amer. J. Math. 96 (1974), 207–213. Zbl0302.53028MR0353216DOI10.2307/2373587
- Otsuki T., 10.2307/2373502, Amer. J. Math. 92 (1970), 145–173. Zbl0196.25102MR0264565DOI10.2307/2373502
- Pigola S., Rigoli M., Setti A.G., Maximum principles on Riemannian manifolds and applications, Mem. Amer. Math. Soc. 822 (2005). Zbl1075.58017MR2116555
- Shiohama K., Xu H., 10.1023/A:1000189116072, Compositio Math. 107 (1997), 221–232. MR1458750DOI10.1023/A:1000189116072
- Wang M.J., Hong Y., Hypersurfaces with constant mean curvature in a locally symmetric manifold, Soochow J. Math. 33 (2007), 1–15. Zbl1132.53032MR2294743
- Wu B.Y., 10.1016/j.difgeo.2009.05.001, Diff. Geom. Appl. 27 (2009), 623–634. MR2567840DOI10.1016/j.difgeo.2009.05.001
- Xu H., Ren X., Closed hypersurfaces with constant mean curvature in a symmetric manifold, Osaka J. Math. 45 (2008), 747–756. MR2468591
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.