On complete linear Weingarten hypersurfaces in locally symmetric Riemannian manifolds

Cícero P. Aquino; Henrique F. de Lima; Fábio R. dos Santos; Marco Antonio L. Velásquez

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 4, page 515-529
  • ISSN: 0010-2628

Abstract

top
Our aim is to apply suitable generalized maximum principles in order to obtain characterization results concerning complete linear Weingarten hypersurfaces immersed in a locally symmetric Riemannian manifold, whose sectional curvature is supposed to obey standard constraints. In this setting, we establish sufficient conditions to guarantee that such a hypersurface must be either totally umbilical or an isoparametric hypersurface with two distinct principal curvatures one of which is simple.

How to cite

top

Aquino, Cícero P., et al. "On complete linear Weingarten hypersurfaces in locally symmetric Riemannian manifolds." Commentationes Mathematicae Universitatis Carolinae 56.4 (2015): 515-529. <http://eudml.org/doc/276197>.

@article{Aquino2015,
abstract = {Our aim is to apply suitable generalized maximum principles in order to obtain characterization results concerning complete linear Weingarten hypersurfaces immersed in a locally symmetric Riemannian manifold, whose sectional curvature is supposed to obey standard constraints. In this setting, we establish sufficient conditions to guarantee that such a hypersurface must be either totally umbilical or an isoparametric hypersurface with two distinct principal curvatures one of which is simple.},
author = {Aquino, Cícero P., de Lima, Henrique F., dos Santos, Fábio R., Velásquez, Marco Antonio L.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {locally symmetric Riemannian manifolds; Einstein manifolds; complete linear Weingarten hypersurfaces; totally umbilical hypersurfaces; isoparametric hypersurfaces},
language = {eng},
number = {4},
pages = {515-529},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On complete linear Weingarten hypersurfaces in locally symmetric Riemannian manifolds},
url = {http://eudml.org/doc/276197},
volume = {56},
year = {2015},
}

TY - JOUR
AU - Aquino, Cícero P.
AU - de Lima, Henrique F.
AU - dos Santos, Fábio R.
AU - Velásquez, Marco Antonio L.
TI - On complete linear Weingarten hypersurfaces in locally symmetric Riemannian manifolds
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 4
SP - 515
EP - 529
AB - Our aim is to apply suitable generalized maximum principles in order to obtain characterization results concerning complete linear Weingarten hypersurfaces immersed in a locally symmetric Riemannian manifold, whose sectional curvature is supposed to obey standard constraints. In this setting, we establish sufficient conditions to guarantee that such a hypersurface must be either totally umbilical or an isoparametric hypersurface with two distinct principal curvatures one of which is simple.
LA - eng
KW - locally symmetric Riemannian manifolds; Einstein manifolds; complete linear Weingarten hypersurfaces; totally umbilical hypersurfaces; isoparametric hypersurfaces
UR - http://eudml.org/doc/276197
ER -

References

top
  1. Alencar H., do Carmo M., 10.1090/S0002-9939-1994-1172943-2, Proc. Amer. Math. Soc. 120 (1994), 1223–1229. Zbl0802.53017MR1172943DOI10.1090/S0002-9939-1994-1172943-2
  2. Alías L.J., de Lira J.H.S., Malacarne J.M., 10.1017/S1474748006000077, J. Inst. Math. Jussieu 5 (2006), 527–562. Zbl1118.53038MR2261223DOI10.1017/S1474748006000077
  3. Alías L.J., García-Martínez S.C., 10.1016/j.jmaa.2009.09.045, J. Math. Anal. Appl. 363 (2010), 579–587. Zbl1182.53052MR2564877DOI10.1016/j.jmaa.2009.09.045
  4. Alías L.J., García-Martínez S.C., Rigoli M., 10.1007/s10455-011-9284-y, Ann. Glob. Anal. Geom. 41 (2012), 307–320. Zbl1237.53044MR2886200DOI10.1007/s10455-011-9284-y
  5. Alías L.J., Impera D., Rigoli M., 10.1090/S0002-9947-2012-05774-6, Trans. Amer. Math. Soc. 365 (2013), 591–621. Zbl1276.53064MR2995367DOI10.1090/S0002-9947-2012-05774-6
  6. Aquino C.P., de Lima H.F., Velásquez M.A.L., 10.2140/pjm.2013.261.33, Pacific J. Math. 261 (2013), 33–43. Zbl1273.53051MR3037557DOI10.2140/pjm.2013.261.33
  7. Brasil A. Jr., Colares A.G., Palmas O., 10.1007/s00605-009-0128-9, Monatsh. Math. 161 (2010), 369–380. Zbl1201.53068MR2734966DOI10.1007/s00605-009-0128-9
  8. Caminha A., 10.2996/kmj/1151936435, Kodai Math. J. 29 (2006), 185–210. Zbl1107.53037MR2247430DOI10.2996/kmj/1151936435
  9. Caminha A., 10.1007/s00574-011-0015-6, Bull. Braz. Math. Soc. 42 (2011), 277–300. Zbl1242.53068MR2833803DOI10.1007/s00574-011-0015-6
  10. Cheng S.Y., Yau S.T., 10.1007/BF01425237, Math. Ann. 225 (1977), 195–204. Zbl0349.53041MR0431043DOI10.1007/BF01425237
  11. L. Karp, On Stokes' theorem for noncompact manifolds, Proc. American Math. Soc. 82 (1981), 487–490. Zbl0471.31004MR0612746
  12. Li H., Suh Y.J., Wei G., 10.4134/BKMS.2009.46.2.321, Bull. Korean Math. Soc. 46 (2009), 321–329. MR2502796DOI10.4134/BKMS.2009.46.2.321
  13. Okumura M., 10.2307/2373587, Amer. J. Math. 96 (1974), 207–213. Zbl0302.53028MR0353216DOI10.2307/2373587
  14. Otsuki T., 10.2307/2373502, Amer. J. Math. 92 (1970), 145–173. Zbl0196.25102MR0264565DOI10.2307/2373502
  15. Pigola S., Rigoli M., Setti A.G., Maximum principles on Riemannian manifolds and applications, Mem. Amer. Math. Soc. 822 (2005). Zbl1075.58017MR2116555
  16. Shiohama K., Xu H., 10.1023/A:1000189116072, Compositio Math. 107 (1997), 221–232. MR1458750DOI10.1023/A:1000189116072
  17. Wang M.J., Hong Y., Hypersurfaces with constant mean curvature in a locally symmetric manifold, Soochow J. Math. 33 (2007), 1–15. Zbl1132.53032MR2294743
  18. Wu B.Y., 10.1016/j.difgeo.2009.05.001, Diff. Geom. Appl. 27 (2009), 623–634. MR2567840DOI10.1016/j.difgeo.2009.05.001
  19. Xu H., Ren X., Closed hypersurfaces with constant mean curvature in a symmetric manifold, Osaka J. Math. 45 (2008), 747–756. MR2468591

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.