Exponential smoothing based on L-estimation
Kybernetika (2015)
- Volume: 51, Issue: 6, page 973-993
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBejda, Přemysl, and Cipra, Tomáš. "Exponential smoothing based on L-estimation." Kybernetika 51.6 (2015): 973-993. <http://eudml.org/doc/276221>.
@article{Bejda2015,
abstract = {Robust methods similar to exponential smoothing are suggested in this paper. First previous results for exponential smoothing in $L_1$ are generalized using the regression quantiles, including a generalization to more parameters. Then a method based on the classical sign test is introduced that should deal not only with outliers but also with level shifts, including a detection of change points. Properties of various approaches are investigated by means of a simulation study. A real data example is used as an illustration.},
author = {Bejda, Přemysl, Cipra, Tomáš},
journal = {Kybernetika},
keywords = {change point; exponential smoothing; quantiles; robust methods; sign test},
language = {eng},
number = {6},
pages = {973-993},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Exponential smoothing based on L-estimation},
url = {http://eudml.org/doc/276221},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Bejda, Přemysl
AU - Cipra, Tomáš
TI - Exponential smoothing based on L-estimation
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 6
SP - 973
EP - 993
AB - Robust methods similar to exponential smoothing are suggested in this paper. First previous results for exponential smoothing in $L_1$ are generalized using the regression quantiles, including a generalization to more parameters. Then a method based on the classical sign test is introduced that should deal not only with outliers but also with level shifts, including a detection of change points. Properties of various approaches are investigated by means of a simulation study. A real data example is used as an illustration.
LA - eng
KW - change point; exponential smoothing; quantiles; robust methods; sign test
UR - http://eudml.org/doc/276221
ER -
References
top- Brown, R. G., Smoothing, Forecasting and Prediction of Descrete Time Series., Prentice-Hall, Englewood Cliffs, NJ 1962.
- Cipra, T., 10.1002/for.3980110106, J. Forecasting 11 (1992), 1, 57-69. DOI10.1002/for.3980110106
- Cipra, T., Romera, R., 10.2307/2289888, In: -Statistical Analysis and Related Methods (Y. Dodge ed.), pp. 233-243, 1992. MR1214835DOI10.2307/2289888
- Gelper, S., Fried, R., Croux, Ch., 10.2139/ssrn.1089403, J. Forecasting 29 (2010), 3, 285-300. Zbl1203.62164MR2752114DOI10.2139/ssrn.1089403
- Hanzák, T., Cipra, T., Exponential smoothing for time series with outliers., Kybernetika 47 (2011), 2, 165-178. Zbl1220.62114MR2828571
- Holt, Ch. C., 10.1016/j.ijforecast.2003.09.015, Int. J. Forecasting 20 (2004), 5-10. DOI10.1016/j.ijforecast.2003.09.015
- Hyndman, R. J., Koehler, A. B., Ord, J. K., Snyder, R. D., 10.1007/978-3-540-71918-2, Springer, Berlin - Heidelberg 2008. Zbl1211.62165DOI10.1007/978-3-540-71918-2
- Jurečková, J., Picek, J., 10.1201/9781420035131, Chapman and Hall/CRC, 2005. Zbl1097.62020DOI10.1201/9781420035131
- Koenker, R., Bassett, G., 10.2307/1913643, Econometrica 46 (1978), 1, 33-50. Zbl0482.62023MR0474644DOI10.2307/1913643
- Koubková, A., 10.1007/978-3-7908-2656-2, In: COMPSTAT 2004 Proceedings (J. Antoch, ed.), Springer Verlag 2004, pp. 1345-1352. DOI10.1007/978-3-7908-2656-2
- Maronna, R. A., Martin, D. R., Yohai, V. J., 10.1002/0470010940, John Wiley and Sons Ltd, Chichester 2006. Zbl1094.62040MR2238141DOI10.1002/0470010940
- Moore, G. H., Wallis, W. A., 10.1080/01621459.1943.10501791, J. Amer. Statist. Assoc. 38 (1943), 222, 153-164. Zbl0063.04084MR0008323DOI10.1080/01621459.1943.10501791
- Papageorgiou, M., Kotsialos, A., Poulimenos, A., 10.1002/for.943, J. Forecasting 25 (2005), 5, 353-368. MR2190371DOI10.1002/for.943
- Romera, R., Cipra, T., 10.1080/03610919508813252, Commun. Statist. - Simulation and Computation 24 (1995), 2, 461-488. Zbl0850.62688MR1333047DOI10.1080/03610919508813252
- Wilcoxon, F., 10.2307/3001968, Biometrics Bull. 1 (1945), 6, 80-83. DOI10.2307/3001968
- Wolfowitz, J., 10.1214/aoms/1177731281, Ann. Math. Statist. 15 (1944), 2, 163-172. Zbl0063.08310MR0010362DOI10.1214/aoms/1177731281
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.