Generalized versions of MV-algebraic central limit theorems
Piotr Nowak; Olgierd Hryniewicz
Kybernetika (2015)
- Volume: 51, Issue: 5, page 765-783
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topNowak, Piotr, and Hryniewicz, Olgierd. "Generalized versions of MV-algebraic central limit theorems." Kybernetika 51.5 (2015): 765-783. <http://eudml.org/doc/276226>.
@article{Nowak2015,
abstract = {MV-algebras can be treated as non-commutative generalizations of boolean algebras. The probability theory of MV-algebras was developed as a generalization of the boolean algebraic probability theory. For both theories the notions of state and observable were introduced by abstracting the properties of the Kolmogorov's probability measure and the classical random variable. Similarly, as in the case of the classical Kolmogorov's probability, the notion of independence is considered. In the framework of the MV-algebraic probability theory many important theorems (as the individual ergodic theorem and the laws of large numbers for observables) were proved. In particular, the central limit theorem (CLT) for sequences of independent and identically distributed observables was considered. In this paper, for triangular arrays of independent, not necessarily identically distributed observables of MV-algebras, we have proved the Lindeberg and the Lyapunov central limit theorems, and the Feller theorem. To show that the generalization proposed by us is essential, we discuss examples of applications of the proved MV-algebraic versions of theorems.},
author = {Nowak, Piotr, Hryniewicz, Olgierd},
journal = {Kybernetika},
keywords = {MV-algebra; MV-algebraic probability; central limit theorem},
language = {eng},
number = {5},
pages = {765-783},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Generalized versions of MV-algebraic central limit theorems},
url = {http://eudml.org/doc/276226},
volume = {51},
year = {2015},
}
TY - JOUR
AU - Nowak, Piotr
AU - Hryniewicz, Olgierd
TI - Generalized versions of MV-algebraic central limit theorems
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 5
SP - 765
EP - 783
AB - MV-algebras can be treated as non-commutative generalizations of boolean algebras. The probability theory of MV-algebras was developed as a generalization of the boolean algebraic probability theory. For both theories the notions of state and observable were introduced by abstracting the properties of the Kolmogorov's probability measure and the classical random variable. Similarly, as in the case of the classical Kolmogorov's probability, the notion of independence is considered. In the framework of the MV-algebraic probability theory many important theorems (as the individual ergodic theorem and the laws of large numbers for observables) were proved. In particular, the central limit theorem (CLT) for sequences of independent and identically distributed observables was considered. In this paper, for triangular arrays of independent, not necessarily identically distributed observables of MV-algebras, we have proved the Lindeberg and the Lyapunov central limit theorems, and the Feller theorem. To show that the generalization proposed by us is essential, we discuss examples of applications of the proved MV-algebraic versions of theorems.
LA - eng
KW - MV-algebra; MV-algebraic probability; central limit theorem
UR - http://eudml.org/doc/276226
ER -
References
top- Athreya, K. B., Lahiri, S. N., 10.1007/978-0-387-35434-7, Springer-Verlag, Heidelberg 2006. Zbl1130.60001MR2247694DOI10.1007/978-0-387-35434-7
- Billingsley, P., Probability and Measure. Second edition., Wiley Press, New York 1986. MR0830424
- Birkhoff, G., Neumann, J. Von, 10.2307/1968621, Ann. Math. 37 (1936), 823-843. MR1503312DOI10.2307/1968621
- Carathéodory, C., 10.1007/978-3-0348-6948-5, Birkäuser, Boston 1956. Zbl0074.04003MR0079628DOI10.1007/978-3-0348-6948-5
- Chang, C. C., 10.2307/1993227, Trans. Amer. Math. Soc. 88 (1958), 2, 467-490. Zbl0084.00704MR0094302DOI10.2307/1993227
- Chovanec, F., States and observables on MV algebras., Tatra Mountains Mathematical Publications 3 (1993), 55-65. Zbl0799.03074MR1278519
- Cignoli, R., D'Ottaviano, I., Mundici, D., 10.1007/978-94-015-9480-6, Kluwer Academic Publishers, Dordrecht 2000. Zbl0937.06009MR1786097DOI10.1007/978-94-015-9480-6
- Dvurečenskij, A., Chovanec, F., 10.1007/bf00674352, Int. J. Theoret. Physics 27 (1988), 1069-1082. Zbl0657.60004MR0967421DOI10.1007/bf00674352
- Gudder, S., Stochastic Methods of Quantum Mechanics., Elsevier, North-Holland 1979. MR0543489
- Łukasiewicz, J., Tarski, A., Untersuchungen über den Aussagenkalkül., Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie, Classe III 23 (1930), 30-50.
- Mesiar, R., 10.1006/jmaa.1993.1109, J. Math. Anal. Appl. 174 (1993), 178-193. Zbl0777.60005MR1212925DOI10.1006/jmaa.1993.1109
- Mesiar, R., Fuzzy sets, difference posets and MV-algebras., In: Fuzzy Logic and Soft Computing (B. Bouchon-Meunier, R. R. Yager and L. A. Zadeh, eds.), World Scientific, Singapore 1995, pp. 345-352. Zbl0948.03059MR1391013
- Mundici, D., 10.1016/0022-1236(86)90015-7, J. Funct. Anal. 65 (1986), 15-63. MR0819173DOI10.1016/0022-1236(86)90015-7
- Mundici, D., 10.1007/BF00979516, Int. J. Theor. Physics 32 (1993), 1941-1955. Zbl0799.03019MR1255397DOI10.1007/BF00979516
- Mundici, D., Advanced Lukasiewicz Calculus and MV-algebras., Springer, New York 2011. Zbl1235.03002MR2815182
- Nowak, P., Gadomski, J., Deterministic properties of serially connected distributed lag models., Oper. Res. Decis. 23 (2013), 3, 43-55. MR3236441
- Piasecki, K., 10.1016/0165-0114(86)90020-5, Fuzzy Sets and Systems 18 (1986), 2, 183-185. Zbl0656.60011MR0828642DOI10.1016/0165-0114(86)90020-5
- Pták, P., Pulmannová, S., Kvantové logiky (in Slovak)., Veda, Bratislava 1989. MR1176313
- Pulmannová, S., 10.1007/s005000050081, Soft Computing 4 (2000), 45-48. Zbl1005.06006DOI10.1007/s005000050081
- Pykacz, J., Quantum logics as families of fuzzy subsets of the set of physical states., In: Preprints of the Second IFSA Congress, Tokyo 1987, pp. 437-440.
- Pykacz, J., Fuzzy set description of physical systems and their dynamics., Busefal 38 (1989), 102-107.
- Riečan, B., A new approach to some notions of statistical quantum mechanics., Busefal 35 (1988), 4-6.
- Riečan, B., Fuzzy connectives and quantum models., In: Cybernetics and Systems Research (R. Trappl, ed.), World Scientific, Singapore 1992, pp. 335-338.
- Riečan, B., 10.1016/s0165-0114(97)00051-1, Fuzzy Sets and Systems 101 (199), 79-86. Zbl0966.81011MR1658964DOI10.1016/s0165-0114(97)00051-1
- Riečan, B., 10.1016/s0165-0114(98)00218-8, Fuzzy Sets and Systems 102 (1999), 445-450. Zbl0930.06009MR1676911DOI10.1016/s0165-0114(98)00218-8
- Riečan, B., 10.1007/978-3-540-75939-3_17, In: Trends and Progress in System Identification, Papers in Honor of Daniele Mundici on the Occasion of His 60th birthday, Lect. Notes in Computer Sci. 4460 (S. Aguzzoli et al., eds.), Springer, Berlin 2007, pp. 290-308. Zbl1122.60004DOI10.1007/978-3-540-75939-3_17
- Riečan, B., 10.1007/s005000050082, Soft Computing 4 (2000), 49-57. Zbl1042.28018DOI10.1007/s005000050082
- Riečan, V., Mundici, D., 10.1016/b978-044450263-6/50022-1, In: Handbook of Measure Theory (E. Pap, ed.), Elsevier, Amsterdam 2002, pp. 869-909. Zbl1017.28002MR1954631DOI10.1016/b978-044450263-6/50022-1
- Riečan, B., Neubrunn, T., 10.1007/978-94-015-8919-2, Kluwer Academic Publishers, Bratislava 1997. Zbl0916.28001MR1489521DOI10.1007/978-94-015-8919-2
- Rose, A., Rosser, J. B., 10.2307/1993083, Trans. Amer. Math. Soc. 87 (1958), 1-53. Zbl0085.24303MR0094299DOI10.2307/1993083
- Varadarajan, V. C., 10.1007/978-0-387-49386-2, van Nostrand, Princeton 1968. MR0471674DOI10.1007/978-0-387-49386-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.