Non-decomposable Nambu brackets

Klaus Bering

Archivum Mathematicum (2015)

  • Volume: 051, Issue: 4, page 211-232
  • ISSN: 0044-8753

Abstract

top
It is well-known that the Fundamental Identity (FI) implies that Nambu brackets are decomposable, i.e. given by a determinantal formula. We find a weaker alternative to the FI that allows for non-decomposable Nambu brackets, but still yields a Darboux-like Theorem via a Nambu-type generalization of Weinstein’s splitting principle for Poisson manifolds.

How to cite

top

Bering, Klaus. "Non-decomposable Nambu brackets." Archivum Mathematicum 051.4 (2015): 211-232. <http://eudml.org/doc/276245>.

@article{Bering2015,
abstract = {It is well-known that the Fundamental Identity (FI) implies that Nambu brackets are decomposable, i.e. given by a determinantal formula. We find a weaker alternative to the FI that allows for non-decomposable Nambu brackets, but still yields a Darboux-like Theorem via a Nambu-type generalization of Weinstein’s splitting principle for Poisson manifolds.},
author = {Bering, Klaus},
journal = {Archivum Mathematicum},
keywords = {Nambu bracket; Darboux Theorem; Moser trick; multisymplectic; presymplectic; Weinstein splitting principle},
language = {eng},
number = {4},
pages = {211-232},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Non-decomposable Nambu brackets},
url = {http://eudml.org/doc/276245},
volume = {051},
year = {2015},
}

TY - JOUR
AU - Bering, Klaus
TI - Non-decomposable Nambu brackets
JO - Archivum Mathematicum
PY - 2015
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 051
IS - 4
SP - 211
EP - 232
AB - It is well-known that the Fundamental Identity (FI) implies that Nambu brackets are decomposable, i.e. given by a determinantal formula. We find a weaker alternative to the FI that allows for non-decomposable Nambu brackets, but still yields a Darboux-like Theorem via a Nambu-type generalization of Weinstein’s splitting principle for Poisson manifolds.
LA - eng
KW - Nambu bracket; Darboux Theorem; Moser trick; multisymplectic; presymplectic; Weinstein splitting principle
UR - http://eudml.org/doc/276245
ER -

References

top
  1. Alekseevsky, D., Guha, P., On decomposability of Nambu-Poisson tensor, Acta Math. Univ. Comenian. (N.S.) 65 (1996), 1–10. (1996) Zbl0864.70012MR1422290
  2. Awane, A., 10.1063/1.529855, J. Math. Phys. 33 (1992), 4046–4052. (1992) Zbl0781.53024MR1191763DOI10.1063/1.529855
  3. Baez, J.C., Hoffnung, A.E., Rogers, C.L., 10.1007/s00220-009-0951-9, Comm. Math. Phys. 293 (2010), 701–725, arXiv:0808.0246. (2010) Zbl1192.81208MR2566161DOI10.1007/s00220-009-0951-9
  4. Bagger, J., Lambert, N., 10.1103/PhysRevD.75.045020, Phys. Rev. D 75 (2007), 045020, arXiv:hep-th/0611108. (2007) MR2304429DOI10.1103/PhysRevD.75.045020
  5. Cantrijn, F., Ibort, A., de León, M., 10.1017/S1446788700036636, J. Austral. Math. Soc. Ser. A 66 (1999), 303–330. (1999) Zbl0968.53052MR1694063DOI10.1017/S1446788700036636
  6. de Azcárraga, J.A., Izquierdo, J.M., 10.1088/1751-8113/43/29/293001, J. Phys. A 43 (2010), 293001, arXiv:1005.1028. (2010) Zbl1202.81187DOI10.1088/1751-8113/43/29/293001
  7. de Azcárraga, J.A., Perelomov, A.M., Bueno, J.C. Pérez, 10.1088/0305-4470/29/7/001, J. Phys. A 29 (1996), 151–157, arXiv:q-alg/9601007. (1996) MR1395505DOI10.1088/0305-4470/29/7/001
  8. Dito, G., Flato, M., Sternheimer, D., Takhtajan, L., 10.1007/BF02509794, Comm. Math. Phys. 183 (1997), 1–22, arXiv:hep-th/9602016. (1997) Zbl0877.70012MR1461949DOI10.1007/BF02509794
  9. Filippov, V.T., 10.1007/BF00969110, Siberian Math. J. 26 (1985), 879–891. (1985) Zbl0594.17002MR0816511DOI10.1007/BF00969110
  10. Gautheron, Ph., Some remarks concerning Nambu mechanics, Lett. Math. Phys. 37 (1996), 103–116. (1996) Zbl0849.70014MR1392151
  11. Gustavsson, A., Algebraic structures on parallel M2-branes, Nuclear Phys. B 811 (2009), 66–76, arXiv:0709.1260. (2009) Zbl1194.81205MR2492260
  12. Martin, G., 10.1007/BF00402020, Lett. Math. Phys. 16 (1988), 133–138. (1988) Zbl0676.58024MR0962194DOI10.1007/BF00402020
  13. Michor, P.W., Vaisman, I., A note on n -ary Poisson brackets, Rend. Circ. Mat. Palermo (2) Suppl. 63 (2000), 165–172, arXiv:math/9901117. (2000) Zbl0986.53035MR1758092
  14. Moser, J., 10.1090/S0002-9947-1965-0182927-5, Trans. Amer. Math. Soc. 120 (1965), 286–294. (1965) Zbl0141.19407MR0182927DOI10.1090/S0002-9947-1965-0182927-5
  15. Nakanishi, N., On Nambu-Poisson manifolds, Rev. Math. Phys. 10 (1998), 499–510. (1998) Zbl0929.70015MR1629719
  16. Nambu, Y., 10.1103/PhysRevD.7.2405, Phys. Rev. D 7 (1973), 2405–2412. (1973) Zbl1027.70503MR0455611DOI10.1103/PhysRevD.7.2405
  17. Pandit, S.A., Gangal, A.D., Momentum maps and Noether theorem for generalized Nambu mechanics, arXiv:math/9908023. 
  18. Pandit, S.A., Gangal, A.D., 10.1088/0305-4470/31/12/014, J. Phys. A 31 (1998), 2899–2912, arXiv:chao-dyn/9609015. (1998) Zbl0924.70018MR1625155DOI10.1088/0305-4470/31/12/014
  19. Sahoo, D., Valsakumar, M.C., 10.1103/PhysRevA.46.4410, Phys. Rev. A 46 (1992), 4410–4412. (1992) DOI10.1103/PhysRevA.46.4410
  20. Takhtajan, L., 10.1007/BF02103278, Comm. Math. Phys. 160 (1994), 295–315, arXiv:hep-th/9301111. (1994) Zbl0808.70015MR1262199DOI10.1007/BF02103278
  21. Vaisman, I., A survey on Nambu-Poisson brackets, Acta Math. Univ. Comenian. (N.S.) 68 (1999), 213–241, arXiv:math/9901047. (1999) Zbl0953.53023MR1757790
  22. Weinstein, A., The local structure of Poisson manifolds, J. Differential Geom. 18 (1983), 523–557. (1983) Zbl0524.58011MR0723816
  23. Weitzenböck, R., Invariantentheorie, P. Noordhoff, Groningen, 1923. (1923) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.