On generalized CS-modules

Qingyi Zeng

Czechoslovak Mathematical Journal (2015)

  • Volume: 65, Issue: 4, page 891-904
  • ISSN: 0011-4642

Abstract

top
An 𝒮 -closed submodule of a module M is a submodule N for which M / N is nonsingular. A module M is called a generalized CS-module (or briefly, GCS-module) if any 𝒮 -closed submodule N of M is a direct summand of M . Any homomorphic image of a GCS-module is also a GCS-module. Any direct sum of a singular (uniform) module and a semi-simple module is a GCS-module. All nonsingular right R -modules are projective if and only if all right R -modules are GCS-modules.

How to cite

top

Zeng, Qingyi. "On generalized CS-modules." Czechoslovak Mathematical Journal 65.4 (2015): 891-904. <http://eudml.org/doc/276289>.

@article{Zeng2015,
abstract = {An $\mathcal \{S\}$-closed submodule of a module $M$ is a submodule $N$ for which $M/N$ is nonsingular. A module $M$ is called a generalized CS-module (or briefly, GCS-module) if any $\mathcal \{S\}$-closed submodule $N$ of $M$ is a direct summand of $M$. Any homomorphic image of a GCS-module is also a GCS-module. Any direct sum of a singular (uniform) module and a semi-simple module is a GCS-module. All nonsingular right $R$-modules are projective if and only if all right $R$-modules are GCS-modules.},
author = {Zeng, Qingyi},
journal = {Czechoslovak Mathematical Journal},
keywords = {direct summand; $\mathcal \{S\}$-closed submodule; GCS-module; singular submodule},
language = {eng},
number = {4},
pages = {891-904},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On generalized CS-modules},
url = {http://eudml.org/doc/276289},
volume = {65},
year = {2015},
}

TY - JOUR
AU - Zeng, Qingyi
TI - On generalized CS-modules
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 891
EP - 904
AB - An $\mathcal {S}$-closed submodule of a module $M$ is a submodule $N$ for which $M/N$ is nonsingular. A module $M$ is called a generalized CS-module (or briefly, GCS-module) if any $\mathcal {S}$-closed submodule $N$ of $M$ is a direct summand of $M$. Any homomorphic image of a GCS-module is also a GCS-module. Any direct sum of a singular (uniform) module and a semi-simple module is a GCS-module. All nonsingular right $R$-modules are projective if and only if all right $R$-modules are GCS-modules.
LA - eng
KW - direct summand; $\mathcal {S}$-closed submodule; GCS-module; singular submodule
UR - http://eudml.org/doc/276289
ER -

References

top
  1. Birkenmeier, G. F., Müller, B. J., Rizvi, S. Tariq, 10.1080/00927870209342387, Commun. Algebra 30 (2002), 1395-1415. (2002) MR1892606DOI10.1080/00927870209342387
  2. Chatters, A. W., Khuri, S. M., 10.1112/jlms/s2-21.3.434, J. Lond. Math. Soc., II. Ser. 21 (1980), 434-444. (1980) Zbl0432.16017MR0577719DOI10.1112/jlms/s2-21.3.434
  3. Faith, C., Algebra. Vol. II: Ring Theory, Grundlehren der Mathematischen Wissenschaften 191 Springer, Berlin (1976), German. (1976) Zbl0335.16002MR0427349
  4. Goodearl, K. R., Ring Theory. Nonsingular Rings and Modules, Pure and Applied Mathematics 33 Marcel Dekker, New York (1976). (1976) Zbl0336.16001MR0429962
  5. McAdam, S., 10.1080/00927879808826387, Commun. Algebra 26 (1998), 3953-3967. (1998) Zbl0937.13003MR1661248DOI10.1080/00927879808826387
  6. Nguyen, V. D., Dinh, V. H., Smith, P. F., Wisbauer, R., Extending Modules, Pitman Research Notes in Mathematics Series 313 Longman Scientific & Technical, Harlow (1994). (1994) Zbl0841.16001MR1312366
  7. Wisbauer, R., Foundations of Module and Ring Theory, Algebra, Logic and Applications 3 Gordon and Breach Science Publishers, Philadelphia (1991). (1991) Zbl0746.16001MR1144522

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.