On generalized CS-modules
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 4, page 891-904
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZeng, Qingyi. "On generalized CS-modules." Czechoslovak Mathematical Journal 65.4 (2015): 891-904. <http://eudml.org/doc/276289>.
@article{Zeng2015,
abstract = {An $\mathcal \{S\}$-closed submodule of a module $M$ is a submodule $N$ for which $M/N$ is nonsingular. A module $M$ is called a generalized CS-module (or briefly, GCS-module) if any $\mathcal \{S\}$-closed submodule $N$ of $M$ is a direct summand of $M$. Any homomorphic image of a GCS-module is also a GCS-module. Any direct sum of a singular (uniform) module and a semi-simple module is a GCS-module. All nonsingular right $R$-modules are projective if and only if all right $R$-modules are GCS-modules.},
author = {Zeng, Qingyi},
journal = {Czechoslovak Mathematical Journal},
keywords = {direct summand; $\mathcal \{S\}$-closed submodule; GCS-module; singular submodule},
language = {eng},
number = {4},
pages = {891-904},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On generalized CS-modules},
url = {http://eudml.org/doc/276289},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Zeng, Qingyi
TI - On generalized CS-modules
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 891
EP - 904
AB - An $\mathcal {S}$-closed submodule of a module $M$ is a submodule $N$ for which $M/N$ is nonsingular. A module $M$ is called a generalized CS-module (or briefly, GCS-module) if any $\mathcal {S}$-closed submodule $N$ of $M$ is a direct summand of $M$. Any homomorphic image of a GCS-module is also a GCS-module. Any direct sum of a singular (uniform) module and a semi-simple module is a GCS-module. All nonsingular right $R$-modules are projective if and only if all right $R$-modules are GCS-modules.
LA - eng
KW - direct summand; $\mathcal {S}$-closed submodule; GCS-module; singular submodule
UR - http://eudml.org/doc/276289
ER -
References
top- Birkenmeier, G. F., Müller, B. J., Rizvi, S. Tariq, 10.1080/00927870209342387, Commun. Algebra 30 (2002), 1395-1415. (2002) MR1892606DOI10.1080/00927870209342387
- Chatters, A. W., Khuri, S. M., 10.1112/jlms/s2-21.3.434, J. Lond. Math. Soc., II. Ser. 21 (1980), 434-444. (1980) Zbl0432.16017MR0577719DOI10.1112/jlms/s2-21.3.434
- Faith, C., Algebra. Vol. II: Ring Theory, Grundlehren der Mathematischen Wissenschaften 191 Springer, Berlin (1976), German. (1976) Zbl0335.16002MR0427349
- Goodearl, K. R., Ring Theory. Nonsingular Rings and Modules, Pure and Applied Mathematics 33 Marcel Dekker, New York (1976). (1976) Zbl0336.16001MR0429962
- McAdam, S., 10.1080/00927879808826387, Commun. Algebra 26 (1998), 3953-3967. (1998) Zbl0937.13003MR1661248DOI10.1080/00927879808826387
- Nguyen, V. D., Dinh, V. H., Smith, P. F., Wisbauer, R., Extending Modules, Pitman Research Notes in Mathematics Series 313 Longman Scientific & Technical, Harlow (1994). (1994) Zbl0841.16001MR1312366
- Wisbauer, R., Foundations of Module and Ring Theory, Algebra, Logic and Applications 3 Gordon and Breach Science Publishers, Philadelphia (1991). (1991) Zbl0746.16001MR1144522
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.