# Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions

Scott W. Hansen; Oleg Imanuvilov

ESAIM: Control, Optimisation and Calculus of Variations (2011)

- Volume: 17, Issue: 4, page 1101-1132
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topHansen, Scott W., and Imanuvilov, Oleg. "Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions." ESAIM: Control, Optimisation and Calculus of Variations 17.4 (2011): 1101-1132. <http://eudml.org/doc/276325>.

@article{Hansen2011,

abstract = {
Exact controllability
results for a multilayer plate system are obtained from the method of Carleman estimates.
The multilayer plate system is a natural multilayer generalization of a classical three-layer “sandwich
plate” system due to Rao and Nakra. The multilayer version involves a number of
Lamé systems for plane elasticity coupled with a scalar Kirchhoff plate equation.
The plate is assumed to be either clamped or hinged and controls
are assumed to be locally
distributed in a neighborhood of a portion of the boundary. The Carleman estimates developed for the
coupled system are based on some new Carleman estimates for the Kirchhoff plate as well as some known Carleman
estimates due to Imanuvilov and Yamamoto for the Lamé system.
},

author = {Hansen, Scott W., Imanuvilov, Oleg},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Carleman estimates; exact controllability;
multilayer plate; Lamé system; Kirchhoff plate; exact controllability results; multilayer plate system; method of Carleman estimates},

language = {eng},

month = {11},

number = {4},

pages = {1101-1132},

publisher = {EDP Sciences},

title = {Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions},

url = {http://eudml.org/doc/276325},

volume = {17},

year = {2011},

}

TY - JOUR

AU - Hansen, Scott W.

AU - Imanuvilov, Oleg

TI - Exact controllability of a multilayer Rao-Nakra plate with clamped boundary conditions

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2011/11//

PB - EDP Sciences

VL - 17

IS - 4

SP - 1101

EP - 1132

AB -
Exact controllability
results for a multilayer plate system are obtained from the method of Carleman estimates.
The multilayer plate system is a natural multilayer generalization of a classical three-layer “sandwich
plate” system due to Rao and Nakra. The multilayer version involves a number of
Lamé systems for plane elasticity coupled with a scalar Kirchhoff plate equation.
The plate is assumed to be either clamped or hinged and controls
are assumed to be locally
distributed in a neighborhood of a portion of the boundary. The Carleman estimates developed for the
coupled system are based on some new Carleman estimates for the Kirchhoff plate as well as some known Carleman
estimates due to Imanuvilov and Yamamoto for the Lamé system.

LA - eng

KW - Carleman estimates; exact controllability;
multilayer plate; Lamé system; Kirchhoff plate; exact controllability results; multilayer plate system; method of Carleman estimates

UR - http://eudml.org/doc/276325

ER -

## References

top- R. Dautray and J.-L. Lions (with collaboration of M. Artola, M. Cessenat, H. Lanchon), Mathematical Analysis and Numerical Methods for Science and Technology, Volume5: Evolution Problems I. Springer-Verlag (1992).
- R.A. DiTaranto, Theory of vibratory bending for elastic and viscoelastic layered finite-length beams. J. Appl. Mech.32 (1965) 881–886.
- S.W. Hansen, Several related models for multilayer sandwich plates. Math. Models Methods Appl. Sci.14 (2004) 1103–1132.
- S.W. Hansen, Semigroup well-posedness of a multilayer Mead-Markus plate with shear damping, in Control and Boundary Analysis, Lect. Not. Pure Appl. Math.240, Chapman & Hall/CRC, Boca Raton (2005) 243–256.
- S.W. Hansen and R. Rajaram, Riesz basis property and related results for a Rao-Nakra sandwich beam. Discrete Contin. Dynam. Syst.Suppl. (2005) 365–375.
- L. Hörmander, Linear Partial Differential Equations. Springer-Verlag, Berlin (1963).
- O.Y. Imanuvilov, On Carleman estimates for hyperbolic equations. Asymptotic Anal.32 (2002) 185–220.
- O.Y. Imanuvilov and J.P. Puel, Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems. Int. Math. Res. Not.16 (2003) 883–913.
- O.Y. Imanuvilov and M. Yamamoto, Carleman estimates and the non-stationary Lamé system and the application to an inverse problem. ESIAM: COCV11 (2005) 1–56.
- O.Y. Imanuvilov and M. Yamamoto, Carleman estimates for the three dimensional Lamé system and applications to an inverse problem, in Control Theory of Partial Differential Equations, Lect. Notes Pure. Appl. Math.242 (2005) 337–374.
- O.Y. Imanuvilov and M. Yamamoto, Carleman estimates for the Lamé system with stress boundary conditions and the application to an inverse problem. Publications of the Research Institute for Mathematical Sciences Kyoto University43 (2007) 1023–1093.
- V. Komornik, A new method of exact controllability in short time and applications. Ann. Fac. Sci. Toulouse Math.10 (1989) 415–464.
- J. Lagnese, Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics10. Society for Industrial and Applied Mathematics (1989).
- J.E. Lagnese and J.-L Lions, Modelling, Analysis and Control of Thin Plates, Recherches en Mathématiques Appliquées RMA6. Springer-Verlag (1989).
- I. Lasiecka and R. Triggiani, Exact controllability and uniform stabilization of Kirchoff plates with boundary controls only on Δw|Σ. J. Differ. Eqn.93 (1991) 62–101.
- I. Lasiecka and R. Triggiani, Sharp regularity for elastic and thermoelastic Kirchoff equations with free boundary conditions. Rocky Mountain J. Math.30 (2000) 981–1024.
- J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag (1971).
- J.L. Lions, Exact controllability, stabilization and perturbations for distributed systems. SIAM Rev.30 (1988) 1–68.
- D.J. Mead and S. Markus, The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J. Sound Vibr.10 (1969) 163–175.
- Y.V.K.S. Rao and B.C. Nakra, Vibrations of unsymmetrical sandwich beams and plates with viscoelastic cores. J. Sound Vibr.34 (1974) 309–326.
- R. Rajaram, Exact boundary controllability results for a Rao-Nakra sandwich beam. Systems Control Lett.56 (2007) 558–567.
- R. Rajaram and S.W. Hansen, Null-controllability of a damped Mead-Markus sandwich beam. Discrete Contin. Dynam. Syst.Suppl. (2005) 746–755.
- C.T. Sun and Y.P. Lu, Vibration Damping of Structural Elements. Prentice Hall (1995).
- D. Tataru, Carleman estimates and unique continuation for solutions to boundary value problems. J. Math. Pures. Appl.75 (1996) 367–408.
- X. Zhang, Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities. SIAM J. Control Optim.39 (2000) 812–834.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.